30.11.2023

Путем пассивного транспорта реабсорбируются следующие вещества. Функциональные исследования почек. Оценка клубочковой фильтрации. Оценка канальцевой реабсорбции. Изменения суточного диуреза. Реабсорбция в различных отделах нефрона


text_fields

text_fields

arrow_upward

Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией

В зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную .

Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция

text_fields

text_fields

arrow_upward

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже существенно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта.

Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов:

1) активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды,
2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды.

Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­ порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче.

Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют поглощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция

text_fields

text_fields

arrow_upward

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­ трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­ фаты. В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множи тельной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2).

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок - осмотическое давление мочи в условиях действия вазопрессина (концентрирование мочи).

Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм - пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая про тивоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции

text_fields

text_fields

arrow_upward

Регуляция каналъцевой реабсорбции осуществляется как нервным , так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза - цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи.

Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов - ренин- ангиотензинную, кининовую, простагландины и др. Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3).

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.
Б-л мембрана - базолатеральная мембрана клеток,
А мембрана - апикальная мембрана,
ГН - гуанидиновый нуклеотид,АЦ - аденилатциклаза.

После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые протеинкиназы. Под влиянием этих ферментов происходит фосфорилирование мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция воды регулируется и другими гормона­ми.

С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

1) повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);

2) меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);

3) меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

4) меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);

5) повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового.вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопрессином, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение).

Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.

Роль почек в человеческом организме неоценима. Эти жизненно важные органы выполняют множество функций, они регулируют объём крови, устраняют продукты распада из тела, нормализуют кислотно-щелочное и водно-солевое равновесие и т. д. Эти процессы осуществляются благодаря тому, что в организме происходит мочеобразование. Канальцевая реабсорбция относится к одной из стадий этого важного процесса, оказывающего влияние на деятельность всего организма в целом.

Важность выделительной системы организма

Выведение из организма конечных продуктов метаболизма тканей – это очень важный процесс, поскольку эти продукты ужа неспособны принести пользу, но могут оказать токсическое воздействие на человека.

К выделительным органам относится:

  • кожа;
  • кишечник;
  • почки;
  • лёгкие.

Образование предсердного натрийуретического гормона осуществляется в предсердиях при их растяжении, вызванном избытком крови. Это гормональное вещество, наоборот, уменьшает всасывание воды в дистальных канальцах, усиливая процесс мочеобразования и способствуя выводу из организма избыточного содержания жидкости.

Какие могут быть нарушения?

Заболевания почек могут быть вызваны различными причинами, среди которых патологические изменения реабсорбции занимают не последнее место. При нарушениях всасывания воды может развиться полиурия , или патологическое увеличение мочеобразования , а также олигурия , при которой суточное содержание мочи составляет менее одного литра.

Нарушения усваивания глюкозы приводят к глюкозурии , при которой это вещество не реабсорбируется совсем, и в полном объёме выводится из организма вместе с мочой.

Очень опасно состояние острой почечной недостаточности, когда функции почек нарушаются, и органы прекращают нормально функционировать.

В почках человека за одни сутки образуется до 170 л фильтрата, а выделяется 1-1,5л конечной мочи, остальная жидкость всасывается в канальцах. Первичная моча изотонична плазме крови (т.е. это плазма крови без белков) Обратное всасывание веществ в канальцах состоит в том, чтобы вернуть все жизненно-важные вещества и в необходимых количествах из первичной мочи.

Объем реабсорбции = объем ультрафильтрата – объем конечной мочи.

Молекулярные механизмы, участвующие в осуществлении процессов реабсорбции те же, что и механизмы, действующие при переносе молекул через плазматические мембраны в других частях организма это диффузия, активный и пассивный транспорт, эндоцитоз и пр.

Есть два пути для движения реабсорбируемого вещества из просвета в интерстициальное пространство.

Первый - движение между клетками, т.е. через плотное соединение двух соседних клеток - это парацеллюлярный путь . Парацеллюлярная реабсорбция может осуществляться посредствомдиффузии или за счет переноса вещества вместе с растворителем. Второй путь реабсорбции- транцеллюлярный ("через" клетку). В этом случае реабсорбируемое вещество должно преодолеть две плазматические мембраны на своем пути из просвета канальца к интерстициальной жидкости - люминальную (или апекальную) мембрану, отделяющую жидкость в просвете канальца от цитоплазмы клеток, и базолатеральную (или контрлюминальную) мембрану, отделяющую цитоплазму от интерстициальной жидкости.Трансцеллюлярный транспорт определяется терминомактивный , для краткости, хотя пересечение, по меньшей мере, одной из двух мембран осуществляется посредством первично или вторично активного процесса.Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида транспорта- первично-активный и вторично-активный . Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Этот транспорт обеспечивается энергией получаемой непосредственно при расщеплении молекул АТФ. Примером служит транспорт ионов Na, который происходит при участии Na + ,К + АТФазы, использующей энергию АТФ. В настоящее время известны следующие системы первично активного транспорта: Na + , K + - АТФаза; Н + -АТФаза; Н + ,К + -АТФаза и Са + АТФаза.

Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс, так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na + . Этот комплекс (переносчик + органическое вещество + Na +) способствует перемещению вещества через мембрану щеточной каемки и его поступление внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непосредственным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na + , К + -АТФазы, локализованной в латеральных и базальных мембранах клетки. РеабсорбцияNа + Cl - представляет наиболее значительный по объему и энергетическим затратам процесс.

Различные отделы почечных канальцев отличаются по способности всасывать вещества. С помощью анализа жидкостей из различных частей нефрона были установлены состав жидкости и особенности работы всех отделов нефрона.

Проксимальный каналец. Реабсорбция в проксимальном сегменте – облигатная (обязательная).В проксимальных извитых канальцах - реабсорбируется большая часть компонентов первичной мочи с эквивалентным количеством воды (объем первичной мочи уменьшается примерно на 2/3). В проксимальном отделе нефрона полностью реабсорбируются аминокислоты, глюкоза, витамины, необходимое количество белка, микроэлементы, значительное количество Na + , K + , Ca + , Mg + , Cl _ , HCO 2 . Проксимальный каналец играет главную роль в возвращении всех этих профильтровавшихся веществ в кровь с помощью эффективной реабсорбции. Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой может выделяться незначительное ее количество (не более 130 мг). Глюкоза движется против градиента из просвета канальца через люминальную мембрану в цитоплазму посредством системы котранспорта с натрием. Это движение глюкозы опосредовано участием переносчика и является вторично активным транспортом, поскольку энергия, необходимая для осуществления движения глюкозы через люминальную мембрану, вырабатывается за счет движения натрия по его электрохимическому градиенту, т.е. посредством котранспорта. Данный механизм котранспорта столь мощный, что позволяет полностью всасывать всю глюкозу из просвета канальца. После проникновения в клетку глюкоза должна преодолеть базолатеральную мембрану, что происходит посредством независимой от участия натрия облегченной диффузии, это движение по градиенту поддерживается за счет высокой концентрации глюкозы, накапливающейся в клетке, вследствие активности люминального процесса котранспорта. Чтобы обеспечить активную трансцеллюлярную реабсорбцию, функционирует система: с наличием 2 мембран, которые асиметричны по отношению к присутствию переносчиков глюкозы; энергия выделяется только при преодолении одной мембраны, в данном случае люминальной. Решающий фактор, состоит в том, что весь процесс реабсорбции глюкозы зависит в конечном счете от первично активного транспорта натрия.Вторично активной реабсорбции при котранспорте с натрием через люминальную мембрану, тем же способом что и глюкозареабсорбируются аминокислоты ,неорганический фосфат, сульфат и некоторые органические питательные вещества. Низкомолекулярные белки реабсорбируются путемпиноцитоза в проксимальном сегменте. Реабсорбция белка начинается с эндоцитоза (пиноцитоза) на люминальной мембране. Этот энергозависимый процесс инициируется связыванием молекул профильтровавшегося белка со специфическими рецепторами на люминальной мембране. Обособленные внутриклеточные пузырьки, появившиеся в ходе эндоцитоза, сливаются внутри клетки с лизосомами, чьи ферменты расщепляют белки до низкомолекулярных фрагментов - дипептидов и аминокислот, которые удаляются в кровь через базолатеральную мембрану. Выделение белков с мочой в норме составляет не более 20 - 75 мг в сутки, а при заболевании почек оно может возрастать до 50 г в сутки (протеинурия).

Увеличение выделения белков мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо фильтрации.

Неионная диффузия - слабые органические кислоты и основания плохо диссоциируют. Растворяются в липидном матриксе мембран и реабсорбируются по концентрационному градиенту. Степень их диссоциации зависит от рН в канальцах:при его снижении диссоциация кислот уменьшается ,оснований повышается .Реабсорбция кислот увеличивается ,оснований – уменьшается . При возрастании рН – наоборот. Это используют в клинике для ускорения выведения ядовитых веществ – при отравлении барбитуратами защелачивают кровь. Это увеличивает их содержание в моче.

Петля Генле . В петле Генле в целом всегда реабсорбируется больше натрия и хлора (около 25% фильтруемого количества), чем воды (10% объема профильтровавшейся воды). Это является важным отличием петли Генле от проксимального канальца, где вода и натрий реабсорбируются практически в равных пропорциях. Нисходящая часть петли не реабсорбирует натрий или хлор, но она обладает весьма высокой проницаемостью для воды и реабсорбирует ее. Восходящая же часть(как тонкий, так и толстый ее участок) реабсорбирует натрий и хлор и практически не реабсорбирует воду, поскольку она совершенно не проницаема для нее. Реабсорбция хлорида натрия восходящей частью петли отвечает за реабсорбцию воды в нисходящей ее части, т.е. переход хлорида натрия из восходящей части петли в интерстициальную жидкость увеличивает осмолярность этой жидкости, а это влечет за собой большую реабсорбцию воды посредством диффузии из водопроницаемой нисходящей части петли. Поэтому этот участок канальца получил название разводящий сегмент. В результате жидкость будучи уже гипоосмотичной в восходящей толстой части петли Генле(вследствие выхода натрия), поступает в дистальный извитой каналец, где продолжается процесс разведения и она становится еще более гипоосмотичной, так как в последующих отделах нефрона органические вещества не всасываются в них реабсорбируются только ионы и Н 2 О. Таким образом, можно утверждать, что дистальный извитой каналец и восходящая часть петли Генле функционируют как сегменты, где происходит разведение мочи. По мере продвижения по собирательной трубке мозгового вещества канальцевая жидкость становится все более и более гиперосмотичной, т.к. реабсорбция натрия и воды продолжается и в собирательных трубках, в них происходит формирование конечной мочи (концентрированной, за счет регулируемой реабсорбции воды и мочевины. Н 2 О переходит в интерстициальное вещество согласно законам осмоса, т.к. там более высокая концентрация веществ. Процент реабсорбции воды может широко варьировать в зависимости от водного баланса данного организма.

Дистальная реабсорбция. Факультативная, регулируемая.

Особенности :

1. Стенки дистального сегмента плохо проницаемы для воды.

2. Здесь активно реабсорбируется натрий.

3. Проницаемость стенок регулируется :для воды - антидиуретическим гормоном,для натрия - альдостероном.

4.Происходит процесс секреции неорганических веществ.

Пороговые и непороговые вещества.

Реабсорбция веществ зависит от их концентрации в крови. Порог выведения - та концентрация вещества в крови, при которой оно не может быть полностью реабсорбировано в канальцах и попадает в конечную мочу. Порог выведения разных веществ различен.

Пороговые вещества - это вещества, которые полностью реабсорбируются в почечных канальцах и появляются в конечной моче, только если их концентрация в крови превышает определенную величину. Пороговые - глюкоза реабсорбируется в зависимости от концентрации ее в крови. Глюкоза при повышении ее в крови от 5 до 10 ммоль/л - появляется в моче, аминокислоты, белки плазмы, витамины, ионы Na + Cl _ K + Ca + .

Непороговые вещества - которые выделяются с мочой при любой концентрации их в плазме крови. Это конечные продукты обмена подлежащие удалению из организма (н-р инулин, креатинин, диодраст, мочевина, сульфаты).

Факторы влияющие на реабсорбцию

Почечные факторы:

Реабсорбционная способность почечного эпителия

Внепочечные факторы:

Эндокринная регуляция деятельности почечного эпителия со стороны желез внутренней секреции

ПОВОРОТНО- ПРОТИВОТОЧНАЯ СИСТЕМА

Способность к образованию мочи с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разгадать физиологический механизм этого процесса, но лишь в начале 50-х годов ХХ века была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи связано с механизмом поворотно-противоточной множительной системы некоторых участков нефрона. Компонентами противоточно - множительной системы являются все структурные элементы внутренней зоны мозгового вещества почки: тонкие сегменты восходящих и нисходящих частей петель Генле, принадлежащих юкстамедулярным нефронам, медулярные отделы собирательных трубок, восходящие и нисходящие прямые сосуды пирамид с соединяющими их капилярами, интерстиций сосочка почки с расположенными в нем интерстициальными клетками. Участие в работе противоточного умножителя принимают также структуры, расположенные вне сосочка,- толстые сегменты петель Генле, приносящие и выносящие артериолы юкстамедулярных клубочков и др.

Основные положения: концентрация осмотически активных веществ в содержимом собирательных трубок повышается по мере того, как жидкость перемещается от коры к сосочку. Происходит это вследствие того, что гипертоническая тканевая жидкость интерстиция внутренней зоны мозгового вещества осмотически извлекает воду из первоначально изоосмотической мочи.

Переход воды выравнивает осмотическое давление мочи в извитых канальцах первого порядка до уровня осмотического давления тканевой жидкости и крови. В петле Генле изотоничность мочи нарушается вследствие функционирования особого механизма - поворотно-противоточной системы.

Сущность поворотно-противоточной системы состоит в том, что два колена петли нисходящее и восходящее, тесно соприкасаясь друг с другом, функционируют сопряженно как единый механизм. Эпителий нисходящего (проксимального отдела) петли пропускают воду, но не пропускают Na + . Эпителий восходящего (дистального отдела) петли активно реабсорбируют Na, т.е. из канальцевой мочи переводит его в тканевую жидкость почки, но не пропускает воду.

При прохождении мочи через нисходящий отдел петли Генле моча постепенно сгущается вследствие перехода воды в тканевую жидкость, так как из восходящего отдела переходит Na + и притягивает молекулы воды из нисходящего отдела. Это увеличивает осмотическое давление канальцевой жидкости и она становится гипертоничной на вершине петли Генле.

Вследствие выхода натрия из мочи в тканевую жидкость гипертоничная у вершины петли Генле моча становится гипотоничной по отношению к плазме крови в конце восходящего канальца петли Генле. Между двумя соседними участками нисходящего и восходящего канальцев разность осмотического давления не велика. Петля Генле работает как концентрационный механизм. В ней происходит умножение "одиночного" эффекта - приводящее к концентрированию жидкости в одном колене, за счет разбавления в другом. Это умножение обусловлено противоположным направлением тока жидкости в обеих коленах петли Генле.

В результате в I отделе петли создается продольный концентрационный градиент, причем концентрация жидкости становится в несколько раз больше, чем при одиночном эффекте. Это так называемое умножение концентрирующего эффекта. По ходу петли эти небольшие перепады давления в каждом из участков канальцев суммируются, что приводит к очень большому перепаду (градиенту) осмотического давления между началом или концом петли и ее вершиной. Петля работает как концентрационный механизм, приводящий к реабсорбции большого количества воды и Na + .

В зависимости от состояния водного баланса организма почки выделяют гипотоническую (осмотическое разведение) или, напротив, гипертоничную (осмотически концентрированную) мочу.

В процессе осмотического концентрирования мочи в почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань, которые функционируют как поворотно-противоточная множительная система.

Прямые сосуды мозгового вещества почки, подобно канальцам петли нефрона, образуют, противоточную систему. При движении крови по направлению к вершине мозгового вещества концентрация осмотически активных веществ в ней возрастает, а во время обратного движения крови к корковому веществу, соли и другие вещества дифундируют через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ внутри почки и прямые сосуды функционируют как противоточная система. Скорость движения крови по прямым сосудам, определяет количество удаляемых из мозгового вещества солей и мочевины и отток реабсорбируемой воды.

8606 0

Белок

В процессе клубочковой фильтрации образуется практически безбелковая жидкость, однако через фильтрующую мембрану в нефрон проникает все же небольшое количество различных белков. Они всасываются клетками проксимальных канальцев; экскреция белка в норме не превышает 20—75 мг/сут, хотя при некоторых патологических состояниях протеинурия может достигать 50 г/сут. Реабсорбция белка происходит с помощью процесса, называемого пиноцитозом.

Увеличение экскреции белка почкой может быть обусловлено возрастанием фильтрации белка в клубочках, превышающей способность канальцев к его реабсорбции, и нарушением обратного всасывания белков. Существуют раздельные системы реабсорбции различных белков, так как обнаружен Тm для гемоглобина, альбумина. Протеинурия в клинике может выявляться не только при патологических, но и при ряде физиологических состояний - большой физической нагрузке (маршевая альбуминурия), переходе в вертикальное положение (ортостатическая альбуминурия), повышении венозного давления и др.

Натрий и хлор

Ионы натрия и хлора преобладают во внеклеточной жидкости; они определяют осмотическую концентрацию плазмы крови, от их выведения или удержания почкой зависит регуляции объема внеклеточной жидкости. Так как состав ультрафильтрата весьма близок к внеклеточной жидкости, в первичной моче в наибольшем количестве содержатся ионы натрия и хлора, реабсорбция которых в молярном выражении превышает обратное всасывание всех остальных профильтровавшихся веществ, вместе взятых.

Реабсорбция натрия и хлора в дистальном сегменте нефрона и собирательных трубках обеспечивает участие в осмотическом гомеостазе. Не менее важно и то, что система транспорта натрия связана с трансмембранным переносом большой группы органических и неорганических веществ. В последние годы существенно изменились представления о механизмах, транспорта ионов клетками нефрона [Лебедев А. А., 1972; Наточин Ю. В., 1972; Vogel Н., Ullrich К., 1978]. Если раньше считали активным только транспорт натрия, то в настоящее время убедительно продемонстрирована способность клеток одного из отделов нефрона к активному транспорту ионов хлора; . Сильно изменились представления о механизме реабсорбции жидкости в проксимальном канальце. Ниже обобщены современные данные о реабсорбции натрия и хлора в почечных канальцах и регуляции этого процесса.

В проксимальном сегменте нефрона, включающем извитой и прямой канальцы, реабсорбируется около 2/3 профильтровавшегося натрия и воды, но концентрация натрия в канальцевой жидкости остается такой же, как в плазме крови. Особенность проксимальной реабсорбции заключается в том, что натрий и другие реабсорбируемые вещества всасываются с осмотически эквивалентным объемом воды и содержимое канальца всегда остается изоосмотичным плазме крови. Это обусловлено высокой проницаемостью для воды стенки проксимального канальца.

Клетки этого канальца активно реабсорбируют натрий. В начальных отделах канальца главным анионом, сопровождающим натрий, является бикарбонат; стенка этой части нефрона для хлоридов менее проницаема, что приводит к постепенному увеличению концентрации хлоридов, которая возрастает в 1,4 раза по сравнению с плазмой крови. В начальных частях проксимального канальца интенсивно реабсорбируются глюкоза, аминокислоты и некоторые другие органические компоненты ультрафильтрата. Таким образом, к конечным частям проксимального извитого канальца состав из осмотической жидкости существенно изменяется - из нее всасываются основная масса бикарбоната, многие органические вещества, но становится выше концентрация хлоридов (рис. 1).

Оказалось, что межклеточные контакты в этой части канальца высокопроницаемы для хлоридов. Так как их концентрация в просвете выше, чем в околоканальцевой жидкости и крови, они пассивно реабсорбируются из канальца, увлекая за собой натрий и воду. В прямом отделе проксимального канальца продолжается реабсорбция натрия и хлоридов. В этом отделе происходят как активный транспорт натрия, так и пассивная реабсорбция хлоридов и движение части натрия вместе с ними по межклеточным промежуткам, хорошо проницаемым для хлоридов.

Рис. 1. Локализация реабсорбции и секреции электролитов и неэлектролитов в нефроне. Стрелка, обращенная из просвета канальца, - реабсорбция вещества, в просвет канальца - секреция.

Проницаемость стенки канальцев для ионов и воды определяется свойствами не только мембран клеток, но и зоны плотного соединения, где клетки контактируют друг с другом. Оба этих элемента существенно отличаются в разных отделах нефрона. Через апикальную мембрану клетки натрий входит в цитоплазму пассивно по градиенту электрохимического потенциала, так как внутренняя поверхность клетки электроотрицательна по отношению к канальцевой жидкости.

Далее натрий движется по цитоплазме к базальной и боковым частям клетки, где находятся натриевые насосы. В этих клетках интегральной частью натриевого насоса служит активируемая ионами Na+ и К+ зависимая от Mg2+ аденозинтрифосфатаза (Na+, К+-АТФ-аза) . Этот фермент, используя энергию АТФ, обеспечивает перенос из клетки ионов натрия и поступление в нее ионов калия. Ингибиторами этого фермента служат сердечные гликозиды (например, уабаин, строфантин К и др.) полностью прекращающие активную реабсорбцию натрия клетками проксимального канальца.

Важнейшее значение в функциональной способности проксимального канальца имеет высокопроницаемая для некоторых ионов и воды зона клеточных контактов. Через нее происходят пассивная реабсорбция хлоридов и движение воды по осмотическому градиенту. Полагают, что скорость всасывания жидкости по межклеточным промежуткам регулируется под влиянием таких физических сил, как соотношение между уровнем гидростатического давления в почечных артериях, венах и мочеточнике, величина онкотического давления в околоканальцевых капиллярах и др. Проницаемость межклеточных промежутков не строго постоянна - она может меняться при ряде физиологических состояний. Даже небольшое увеличение осмотического градиента, вызываемое мочевиной, обратимо увеличивает межклеточную проницаемость в почечных канальцах.

В тонком нисходящем отделе петли Генле не происходит сколько-нибудь существенной реабсорбции натрия и хлора. Особенностью этого канальца по сравнению с тонким и толстым восходящим отделом петли Генле является высокая проницаемость для воды. Тонкий нисходящий отдел петли характер разуется низкой проницаемостью для натрия, а восходящий наоборот - высокой. Пройдя по тонкому отделу петли Генле, жидкость поступает в толстый восходящий отдел петли. Стенка этого канальца всегда имеет низкую проницаемость для воды. Особенность клеток этого канальца состоит в том, что в них функционирует хлорный насос, активно реабсорбирующий хлор из просвета канальца, натрий следует пассивно по градиенту. Неясно, происходит ли в этом канальце только пассивная реабсорбция натрия или частично функционирует и натриевый насос.

С клинической точки зрения важно, что открытие хлорного насоса совпало с выяснением механизма действия ряда наиболее эффективных современных диуретиков . Оказалось, что только при введении в просвет толстого восходящего отдела петли фуросемид и этакриновая кислота полностью угнетают реабсорбцию хлора. Они связываются с мембранными элементами клеток изнутри канальца, препятствуют поступлению хлора в клетку, а потому неэффективны при добавлении к внеклеточной жидкости (рис. 2). Эти диуретики поступают в просвет нефрона при фильтрации и секреции в проксимальном канальце, с током мочи достигают восходящего отдела петли Генле, прекращают реабсорбцию хлора и тем самым препятствуют здесь всасыванию натрия.

Рис. 2. Схема регуляции транспорта натрия и хлоридов в почке и механизма действия диуретиков [Наточин Ю. В., 1977]. Сплошной стрелкой показан активный транспорт, пунктирной - пассивный.

Толстый восходящий отдел петли Генле переходит в прямую часть дистального канальца, достигающую области macula densa, за которой следует дистальный извитой каналец. Этот отдел нефрона также малопроницаем для воды. Ведущим механизмом реабсорбции солей в этом канальце является натриевый насос, обеспечивающий реабсорбцию натрия против высокого электрохимического градиента. Особенность реабсорбции натрия в этом отделе состоит в том, что хотя здесь может всосаться лишь 10% профильтровавшегося натрия и скорость реабсорбции меньше, чем в проксимальном канальце, но создается больший концентрационный градиент, концентрация натрия и хлора в просвете может снижаться до 30-40 ммоль /л. В отличие от натрия реабсорбция хлора происходит в основном пассивно.

Связующий отдел соединяет дистальный сегмент нефрона с начальными отделами собирательных трубок. Эти канальцы раньше считавшиеся пассивными проводниками мочи в мочевыводящую систему, являются важнейшими структурами почки, тонко и точно реагирующими на действие гормонов и приспосабливающими работу почки к потребностям организма. В этих канальцах основой реабсорбции служит натриевый насос, хлориды реабсорбируются пассивно. Стенка канальцев может быть не только водонепроницаемой, но и высокопроницаемой для воды в присутствии АДГ. Именно в этом отделе канальцев (а не в дистальном сегменте, как полагали раньше) действует АДГ.

Транспорт натрия в этих клетках регулируется альдостероном. Изменение характера ионного транспорта и тем самым свойств переносчиков и насосов отражается и на особенностях химической структуры диуретиков, которые эффективны в этом отделе нефрона. В этих канальцах действуют верошпирон, амилорид, триамтерен. Верошпирон снижает реабсорбцию натрия, конкурентно уменьшая действие альдостерона. Совсем иной механизм действия у амилорида и триамтерена. Эти препараты действуют только после того, как попадут в просвет нефрона. Они связываются с теми химическими компонентами апикальной мембраны, которые обеспечивают вход натрия в клетку; натрий не может реабсорбироваться и экскретируется с мочой.

Кортикальные отделы собирательных трубок переходят в отделы, проходящие по мозговому веществу почки. Их функция отличается тем, что они способны активно реабсорбировать совсем небольшие количества натрия, но могут создавать очень высокий концентрационный градиент. Стенка этих канальцев малопроницаема для солей, а ее проницаемость для воды регулируется АДГ.

Клиническая нефрология

под ред. Е.М. Тареева

Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь.

Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода.

Альдостерон стимулирует реабсорбцию Na+ и экскрецию K+ и H+ в почечные канальцы в дистальном отделе нефрона, в дистальном канальце и кортикальных собирательных трубочках .

Вазопрессин способствует реабсорбции воды из дистальных извитых канальцев и собирательных трубок.

С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+/K+-АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Величине максимального канальцевого транспорта соответствует старое понятие "почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления. Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом, совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом, ее экскреция зависит от диуреза.

Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся - в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой. Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода реабсорбируется во всех отделах нефрона пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+/K+-АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них - это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода - наружу. Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+/К+-АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы. После прохождения проксимального отрезка канальца изотоничный фильтрат в уменьшенном объеме поступает в петлю Генле. В этом участке интенсивная реабсорбция натрия не сопровождается реабсорбцией воды, так как стенки этого отрезка мало проницаемы для воды даже под воздействием АДГ. В связи с этим наступают разведение мочи в просвете нефрона и концентрация натрия в интерстиции. Разведенная моча в дистальном отделе канальца теряет избыток жидкости, становясь изотоничной плазме. Уменьшенный объем изотоничной мочи поступает в собирательную систему, идущую в мозговом слое, высокое осмотическое давление в интерстиции которого обусловлено повышенной концентрацией натрия. В собирательных трубочках под влиянием АДГ продолжается обратное всасывание воды в соответствии с концентрационным градиентом. Проходящие в мозговом слое vasa recta функционируют как противоточно-обменные сосуды, забирающие по пути к сосочкам натрий и отдающие его до возвращения к корковому слою. В глубине мозгового слоя таким путем поддерживается высокое содержание натрия, обеспечивающее резорбцию воды из собирательной системы и концентрацию мочи.


© 2024
kropotkinkadet.ru - Портал о развитии ребенка и воспитании детей