30.11.2023

Гиалуроновая кислота для лица: эффект, цена, противопоказания, показания, плюсы, минусы. Синтез гиалуроновой кислоты механистические исследования и биотехнологические заявления Из чего синтезируется гиалуроновая кислота


Гиалуронан представляет собой гликозаминогликан, который образует во внеклеточном матриксе огромные комплексы с протеогликанами. Особенно в большом количестве эти комплексы присутствуют в хрящевой ткани, где гиалуронан посредством линкерного белка связывается с протеогликаном агреканом

Гиалуронан несет сильный отрицательный заряд и поэтому во внеклеточном пространстве связывается с катионами и с молекулами воды. Это приводит к увеличению жесткости внеклеточного матрикса и создает между клетками водяную подушку, которая гасит силы сжатия

Гиалуронан состоит из повторяющихся единиц дисахаридов, связанных в длинные цепи

В отличие от других гликозаминогликанов, гиалуронановые цепи синтезируются на цитозольной поверхности плазматической мембраны и затем выходят из клетки

Клетки связываются с гиалуронанами с участием семейства рецепторов, известных под названием гиаладгерины, которые инициируют сигнальные процессы, контролирующие миграцию клеток и сборку цитоскелета

Гиалуронан (ГК), также известный под названием гиалуроновая кислота или гиалуронат, представляет собой глюкозаминогликан (ГАГ). В отличие от других гликозаминогликанов (ГАГ), связанных с внеклеточном матриксом, гиалуронан не связан ковалентной связью с протеогликанами сердцевинных белков, а образует очень большие комплексы с секретируемыми протеогликанами.

К числу таких наиболее важных комплексов относятся комплексы, присутствующие в хрящевой ткани, где молекулы ГК , секретируемые хондроцитами (хрящеобразующие клетки), связываются примерно со 100 копиями протеоглика-на агрекана. Агрекановые сердцевинные белки через небольшой линкерный белок связываются с одной молекулой ГК через 40-нм интервалы. Такие комплексы в длину могут достигать более 4 мм и обладать мол массой, превышающей 2 х 108 дальтон. Таким образом, с участием ГК во внеклеточном матриксе хрящевой ткани создаются большие гидратированные пространства.

Эти пространства играют особенно важную роль в тканях с низкой плотностью кровеносных сосудов, поскольку они обеспечивают диффузию питательных компонентов и выведение продуктов обмена из внеклеточного пространства.

Гиалуроновая кислота (ГК) обладают очень простой структурой. Подобно всем ГАГ, они являются линейными полимерами одного из дисахаридов, глюкуроновой кислоты, связанной с N-ацетилглюкозамином посредством (3 (1-3) связи. Как показано на рисунке ниже, молекулы ГК содержат в среднем 10 000 (и до 50 000 этих дисахаридов, связанных b(1-4) связью. Поскольку дисахариды несут отрицательный заряд, они связывают катионы и молекулы воды.

Подобно протеогликанам , ГК увеличивают жесткость внеклеточного матрикса и служат в качестве смазки в таких соединительнотканных структурах, как . Гидратированные молекулы ГК также образуют между клетками водяную подушку, которая позволяет тканям гасить силы сжатия.

CD44 образует гомодимеры или гетеродимеры с рецепторами Erb2.
Эти комплексы связываются с рядом сигнальных молекул,
которые контролируют организацию цитоскелета и экспрессию генов.

Молекулы гиалуроновой кислоты (ГК) гораздо крупнее, чем другие ГАГ. Из-за этого клетки должны расходовать на их формирование большие количества энергии. Подсчитано, что для формирования одной среднего размера цепи ГК, необходимо 50 000 эквивалентов АТФ, 20 000 кофакторов НАД и 10 000 групп ацетил-КоА. Поэтому в большинстве клеток синтез ГК находится под жестким контролем.

Синтез гиалуроновой кислоты (ГК) катализируется трансмембранными ферментами, ГК синтазами, локализованными в плазматической мембране. Эти ферменты несколько необычны в том смысле, что они собирают полимер ГК на цитозольной стороне плазматической мембраны, а затем переносят его через мембрану во внеклеточное пространство. Это принципиально отличается от синтеза других ГАГ, которые образуются в аппарате Гольджи и ковалентно связываются с протеогликанами сердцевинных белков по мере их прохождения по секреторному пути.

Важнейшим способом регуляции синтеза гиалуроновой кислоты (ГК) является изменение экспрессии ферментов, ГК синтаз. Экспрессия этих ферментов индуцируется специфичными для клеток факторами роста. Например, фактор роста фибробластов и интерлейкин-1 являются индукторами экспрессии ферментов в фибробластах, в то время как глюкокортикоиды подавляют экспрессию в этих же клетках. Эпидермальный фактор роста стимулирует экспрессию в кератиноцитах, но не в фибробластах. Секреция ГК контролируется независимо от их синтеза, и это обеспечивает, по крайней мере, два способа контроля уровня ГК в тканях.

Наряду с участием в гидратации тканей, гиалуроновая кислота (ГК) связывается со специфическими поверхностными рецепторами, что приводит к стимуляции внутриклеточных сигнальных путей, контролирующих такие процессы, как миграция клеток. Основным рецептором ГК является CD44, относящийся к семейству белков, называемых гиладгеринами, которые связываются с ГК. К остальным представителям этого семейства относятся протеогликаны (например, версикан, агрекан, бревикан) и линкерный белок, который связывает ГК с агреканом в хрящевой ткани. Множественные формы CD44 образуются при альтернативном сплайсинге транскриптов одного гена, хотя функциональные различия между этими изоформами остаются неясными.

CD44 существует в виде гомодимеров, которые экспрессируются во многих типах клеток или в виде гетеродимеров с ErbВ, тирозинкиназой, которая экспрессируется на эпителиальных клетках.

Цитоплазматический участок CD44 обладает несколькими функциями. Он необходим для правильного связывания с ГК и для сортинга рецепторов на клеточной поверхности. Он также участвует в процессах внутриклеточной передачи сигнала. Картирование функциональных областей в цитоплазматическом участке CD44 проводилось при изучении экспрессии мутантных форм CD44 в культуре клеток, и активации сигнальных путей после прикрепления клеток к ГК.

Из этих исследований мы знаем, что гомодимеры CD44 и гетеродимеры CD44/ErbB активируют нерецепторные тирозинкиназы, например Src, а также представителей семейства небольших G-белков, Ras. Эти киназы активируют такие сигнальные белки, как протеинкиназа С, МАР киназа и ядерные факторы транскрипции.

Наряду с этим, как показано на рисунке ниже, сигналы, передающиеся с участием CD44 , могут изменять сборку актинового цитоскелета у поверхности клеток. Это происходит при активации таких белков, связывающих актин, как фодрин и небольшого G-белка, Rac-1. Одним из последствий реорганизации актина является стимуляция миграции клеток под влиянием связывания CD44 с ГК. В опухолях усиление экспрессии CD44 и секреции ГК коррелирует с увеличением ее агрессивности, и является плохим прогностическим признаком.

Обычно считается, что гиалуроновая кислота (ГК ) играет двоякую роль в стимуляции миграции клеток. Во-первых, за счет связывания с внеклеточным матриксом ГК нарушает межклеточные взаимодействия и взаимодействие клеток с матриксом. Мыши, у которых не происходит экспрессии ГК, характеризуются незначительной величиной межклеточного пространства, вследствие чего животные не могут развиваться нормально. Поскольку ГК обладает большим гидратированным объемом, повышенная секреция ГК в опухоли нарушает целостность внеклеточного матрикса, что приводит к образованию больших промежутков, через которые могут мигрировать опухолевые клетки.

Во-вторых, при связывании ГК с рецепторами CD44 могут активироваться внутриклеточные процессы передачи сигналов, непосредственно приводящие к перегруппировкам цитоскелета и к активации миграции клеток. Это подтверждается данными, полученными в экспериментах по добавлению ГК к клеткам в культуре. Клетки, экспрессирующие CD44, начинают мигрировать сразу же после контакта с ГК, и соединения, разрушающие внутриклеточные сигнальные молекулы и связывающиеся с CD44, ингибируют эту миграцию.

1

Дан краткий исторический очерк об открытии и комплексном изучении гиалуроновых кислот. В сравнительном плане проведена систематизация данных научной литературы по особенностям химического строения, физико-химических свойств, гистологической и цитологической принадлежности, функций и метаболизма гиалуроновых кислот у организмов различных таксономических групп. Выявлены особенности ферментного состава, обеспечивающие синтез и деградацию биополимера у микроорганизмов и в клетках тканей млекопитающих. Проанализированы традиционные технологии извлечения из животного сырья и способы его получения на основе культур Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus и Bacillus subtilis. Обоснована научно-техническая разработка инновационных биотехнологий гиалуроновых кислот различной молекулярной массы и перспективы их производственной реализации. Представлены сведения о применении продукции на их основе в различных сферах современной жизни.

гиалуроновая кислота

технологии микробного синтеза

биотехнология

бактерии

1. Белодед А. В. Микробиологический синтез и деградация гиалуроновой кислоты бактериями р. Streptococcus: Автореф. дис. канд. биол. наук: МГУПБ - М., 2008. - 23 с.

2. Бычков С.М., Колесников М.Ф. Способ получения гиалуроновой кислоты //A. с № 219752 СССР, 1968. - Бюл. № 19. - С. 90.

3. Забненкова О.В. Внутридермальные филлеры на основе гиалуроновой кислоты. Показания к применению, возможные комбинации // Пластическая хирургия и косметология: научно-практический журнал, 2010. - № 1 - С. 101-115. URL: http://www.pscj.ru/upload/iblock/569/11.pdf (дата обращения: 24.11.2016)

4. Костина Г., Радаева И. Использование гиалуроновой кислоты в медицине и косметологии // Косметика и медицина, 1999. - № 2-3. - С. 53-57.

5. Лупына Т. П., Волошина Е. С. Микробиологический способ получения гиалуроновой кислоты и перспективы её использования в фармацевтике. Национальный университет пищевых технологий, Украина. - 2014. - С. 4.

6. Препараты Princess filler и Princess volume в коррекции возрастных изменений лица и атрофических рубцов // Инъекционные методы в косметологии, 2013. - №2 /http://corneal.ru/events/publications/43/ (дата обращения:24.11.2016)

7. Португалова B.B., Ерзикян К.Л. Гиалуроновая кислота и ее роль в жизнедеятельности организмов // Успехи соврем. биол., 1986. - Т. 101, № 3. - С. 344-358.

8. Радаева И.Ф., Костина Г.А., Змиевский A.B. Гиалуроновая кислота: биологическая роль, строение, синтез, выделение, очистка и применение // Прикл. биохим. микробиол., 1997. - Т. 33, №2. - С. 133-137.

9. Ряшенцев В.Ю., Никольский С.Ф., Вайнермен Е.С. и др. Способ получения гиалуроновой кислоты // Патент № 2017751 РФ, 1994. - Бюл. № 15. - С. 75-76.

10. Толстых П.И., Стекольников Л.И., Рыльцев В.В. и др. Лекарственные препараты животного происхождения для наружного применения // Хим.-фарм. журн., 1991. - Т. 25, № 4. - С. 83-87

11. Филлеры: что это такое [Электронный ресурс] // Стоматология & косметология http://24stoma.ru/filleri.html (дата обращения: 24.11.2016 г.)

12. Abatangelo G., Martinelli M., Vecchia P. Healing of hyaluronic acid-enriched wounds:histological observations // J. Surg. Res., 1983. - V. 35, № 5. - P. 410-416.

13. Ahmet Tezel & Clenn H. Fredrickon Дермальные филлеры на основе гиалуроновой кислоты: взгляд с позиции науки [Калифорнийский университет, Санта-Барбара, США] [Электронный ресурс] // SKIN AESTHETIC http://estetika.uz/upload/files/da25b536d87b2edf853c5bc5d10f2968.pdf (дата обращения: 24.11.2016)

14. Carter G.R. Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. // Adv. Vet. Sci., 1967. - V. 11. - P. 321-379.

15. DeAngelis P.L., Jing W., Graves M.V., Burbank D.E., van Etten J.L. Hyaluronan synthase оf chlorella virus PBCV-1 // Science, 1997. - V. 278. - P. 1800-1803.

16. DeAngelis P.L., Papaconstantinou J., Weigel P.H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria // J. Biol. Chem, 1993. - V. 268. - P. 14568-14571.

17. Frost G.I., Csoka Т., Stern R. The hyaluronidases: a chemical, biological and clinical overview // Trends Glycosci. Glycotech., 1996. - V. 8. - P. 419-434.

18. Graves M.V., Burbank D.E., Roth R., Heuser J., DeAngelis P.L., van Etten J.L. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae // Virology, 1999. - V. 257. - P.15-23.

19. Karlstam В., Vincent J., Johansson В., Bryno C. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes // Prep. Biochem., 1991. - V. 21. - P. 237-256.

20. Kendall F.E., Heidelberger M., Dawson M.H. A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic Streptococcus. // J. Biol. Chem., 1937. - V. 118. - P. 61-69.

21. Kim J.H., Yoo S.J., Oh D.K., Kweon Y.G. et al. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. // Enzyme Microb. Technol., 1996. - V. 19. - P. 440-445.

22. Lansing M., Lellig S., Mausolf A., Martini I., Crescenzi F., Oregon M., Prehm P. Hyaluronate synthase: cloning and sequencing of the gene from Streptococcus sp. // Biochem. J., 1993. -V. 289. - P. 179-184.

23. Linker A., Meyer K. Production of Unsaturated Uronides by Bacterial Hyaluronidases //Nature, 1954. - V. 174. - P. 1192-1194.

24. Matsubara C, Kajiwara M., Akasaka H., Haze S. Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid // Chem. Pharm. Bull., 1991. - V. 39. - P. 2446-2448.

25. Meyer K. Highly viscous sodium hyaluronate // J. Biol. Chem., 1948. - V. 176. - № 2. - P. 993-997.

26. Meyer K. Hyaluronidases // The Enzymes. - V. 5. / ed. Boyer P.D. - New York: Academic Press, 1971. - P . 307-320.

27. Meyer K., Palmer J. The polysaccharide of the vitreous humor // J. Biol. Chem., 1934. -V. 107. - P. 629-634.

28. Mortimer E.A., Vastine E.L. Production of Capsular Polysaccharide (Hyaluronic Acid)by L Colonies of Group A Streptococci. // J. Bacteriol., 1967. - V. 94, № 1. - P. 268-271.

29. Prehm P. Hyaluronan. // Biopolymers: biology, chemistry, biotechnology, applications. -V. 5: Polysaccharides I. Polysaccharides from prokaryotes. / eds. Vandamme E.J., DeBaets S.,Steinbuchel A. - Weinheim: Wiley-VCH, 2000. - P. 379-404.

30. Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells: characterization of the synthase. // Biochem. J., 1983. - V. 211. - P. 181-189.

31. Roseman S., Moses F.E., Ludowieg J., Dorfman A. The biosynthesis of hyaluronic acidby group A Streptococcus. Utilization of l-C14-glucose // J. Biol. Chem., 1953. - V. 203. - P.213-225.

32. Scott J.E., Cummings C, Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer // Biochem. J., 1991. - V.274. - P. 699-705.

33. Shimada Е., Matsumura G.J. Molecular Weight of Hyaluronic Acid from Rabbit Skin //J. Biochem., 1977. - V. 81. - № l. - P. 79-91.

34. Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: an information-rich system // Eur. J. Cell Biol., 2006. - V. 85. - P. 699-715.

35. Sugahara K., Schwartz N.B., Dorfman A. Biosynthesis of Hyaluronic Acid by Streptococcus // J. Biol. Chem., 1979. - V. 254, № 14. - P. 6252-6261.

36. Weigel P.H., Hascall V.C., Tammi M. Hyaluronan Synthases // J. Biol. Chem., 1997. - V. 272, № 22. - P. 13997-14000.

37. Widner В., Behr R., Von Dollen S., Tang M., Ней Т., Sloma A., Sternberg D., DeAngelis P.L., Weigel P.H., Brown S. Hyaluronic Acid Production in Bacillus subtilis // Appl. Environ. Microbiol., 2005. - V. 71, № 7. - P. 3747-3752.

A DESCRIPTION OF DIFFERENT METHODS USED TO OBTAIN HYALURONIC ACID

Savoskin O. V. 1 Semyonova E. F. 1 Rashevskaya E. Yu. 1 Polyakova A. A. 1 Grybkova E. A. 1 Agabalaeva K. O. 1 Moiseeva I. Ya. 1

1 Penza State University

Abstract:

The article gives a brief historical outline of the discovery and comprehensive study of hyaluronic acids. We compare and systematize scientific papers focusing on the specific features of functions, metabolism, chemical constitution, physical, chemical, histological and cytological properties of hyaluronic acids in organisms belonging to different taxonomic groups. We also reveal the specific features of enzyme composition that ensure the synthesis and degradation of biopolymers in microorganisms and mammals’ tissue cells. In addition, we analyze traditional extraction technologies used with animal-based raw materials and ways of obtaining them from Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus and Bacillus subtilis. Furthermore, we present the grounds for the scientific and technical development of innovative biotechnologies related to hyaluronic acids with different molecular weight and their production prospects. Finally, we give information about how hyaluronic acid-based goods are used in different spheres of modern life.

Keywords:

technologies of microbial synthesis

В последние годы медицина, фармацевтика и косметология далеко шагнули в вопросе использования высокомолекулярных соединений (ВМС), в качестве основных действующих, а также вспомогательных, корригирующих веществ и наполнителей. Одним из наиболее востребованных в медицине и косметологии ВМС на сегодняшний момент, является гиалуроновая кислота (ГК), которая нашла свое применения в хирургии, как заменитель синовиальной жидкости в суставах в качестве смазывающего и хондропротекторного компонента; дерматологии, в качестве ремоделирующего агента при коррекции возрастных деформаций кожи лица, особенно кожи вокруг глаз; гинекологии, в качестве противоспаечного средства при внутривлагалищных сращениях. Таким образом, спектр применения гиалуроновой кислоты весьма широк; он постоянно пополняется, что приводит к повышению спроса на данный вид биополимера, а, следовательно, интересу к альтернативным источникам его получения.

1. История открытия гиалуроновой кислоты

В 1934 г. в журнале Journal of Biological Chemistry была опубликована статья Карла Маера и Джона Палмера, в которой упоминался необычный полисахарид, выделенный из стекловидного тела бычьего глаза (от греч. hyalos — стекловидный и англ. uronic acid - уроновая кислота), достаточно высокой молекулярной массы 450 г/моль и не содержащий сульфатных групп . Дальнейшие исследования показали, что полисахарид представлен фрагментами дисахарида, который состоит из D-глюкуроновой кислоты и N-ацетилировананного глюкозоамина.

Данные о принадлежности биополимера только структурам организмов млекопитающих опровергли, когда в 1937 г. Кендал и Хейдельбергер заявили о выделении полисахарида идентичного гиалуронану из культуральной жидкости гемолитического стрептококка. Идентичность выделенного биополимера подтвердилась ими же позже после установления структуры полисахарида в 60-е годы . В 1954 г. в журнале Nature руководитель лаборатории Meyer опубликовал структурную формулу фрагмента дисахарида, продукта расщепления стрептококковой гиалуронатлиазой .

Научный интерес к гиалуроновой кислоте, ее получению, выделению и применению все больше увеличивался. К настоящему времени опубликовано более 15000 статей в зарубежных и отечественных журналах. Результатом исследований было получение достоверных данных о выделении гиалуронана из различных органов млекопитающих, а также из культур различных клеток (гемолитический стрептококк, стрептомицеты, коринебактерии). Некоторые данные имели промышленное значение, например, экстракция гиалуроновой кислоты из гребней кур используется и сейчас. За полвека увеличился и спектр применения гиалуронана (хирургия, косметология, травматология и ортопедия, дерматология и др.), а также были созданы новейшие лекарственные формы на основе его полимерной структуры . Все это не было возможно без установления биологической роли биополимера, который, как оказалось, служил компонентом клеточного матрикса, необходимого для нормального осуществления метаболических процессов пролиферации и дифференциации тканей. Так был изучен процесс метаболизма гиалуронана в организме человека. Стало известно, что в день распадается и синтезируется около 5 г гиалуроновой кислоты, а ее содержание в теле человека составляет примерно 0,007%, что составляет около 15 г у женщины массой 70 кг .

В 1953 г. Роземан, Мозес и Дорфман опубликовали работы, где был указан способ получения гиалуронана, его осаждения и выделения в свободном виде на основе культур гемолитического стрептококка. В дальнейшем их методы выделения и осаждения были усовершенствованы Цифонелли и Маедо, что позволило повысить выход и чистоту продукта . Механизм образования гиалуронана в бактериях, в том числе стрептококков, был выявлен позже, когда был исследован ферментный состав микроорганизмов, способных к синтезу гиалуроновой кислоты. В 1959 г. было доказано существование специфических пептидов гиалуронатсинтетаз, которые осуществляют синтез полисахарида в мембранах бактерий .

В 1992 г. американские ученые заявили о клонировании гена, отвечающего за синтез гиалуронатсинтетазы, и передаче его штамму кишечной палочки. Однако активного фермента получить не смогли. ДеАнгелис в 2002 г. сообщил об успешном выделении оперона гиалуронатсинтетазы и экспрессии его в микроорганизм. Это был первый случай клонирования глюкозоаминогликансинтетаз в мировой практике .

В настоящее время в мире проводятся исследования механизмов действия гиалуроновых кислот, их роли в организме человека и альтернативных путей использования. Однако, особенно актуальными являются вопросы микробного синтеза гиалуронана, что подтверждает цена за килограмм очищенного продукта, составляющая около 700000 т. руб. (импортируемый продукт на основе животного сырья). Так, за последние 20 лет в мире было выдано более 50 патентов, что свидетельствует о высоком интересе к рассматриваемой проблеме.

2. Химическое строение и физические свойства гиалуроновой кислоты

Около 20 лет с момента первой публикации об открытии животного полисахарида гиалуроновой кислоты (1934 г.) понадобилось лаборатории Meyer, для установления точного химического строения гиалуроновой кислоты. Гиалуроновая кислота, гиалуронат или гиалуронан - (C14H21NO11)n - органическое соединение, относящееся к группе несульфатированных глюкозоаминогликанов (рис. 1). Наличие многочисленных сульфатированных групп у родственных глюкозоаминогликанов является причиной многочисленной изомерии, чего не наблюдается у гиалуроновой кислоты, которая всегда химически идентична, в независимости от методов и источников получения. Молекула гиалуроновой кислоты построена из повторяющихся фрагментов D-глюкуроновой кислоты и N-ацетил-D-глюкозоамина, соединенных β-(1-3)гликозидной связью. Основы фрагментов сахаров - это глюкопиранозное кольцо с различными заместителями (ацетамидная группа, гидроксильные и карбоксильные функциональные группы).

Рис. 1. Химическая формула гиалуроновой кислоты

Для молекулы гиалуроновой кислоты характерно образование большого количества водородных связей как внутри молекулы, так и между соседними углеводными остатками, находящимися на значительном друг от друга расстоянии, а в водном растворе даже между соседними молекулами через карбоксил и ацетамидную группу. Имеет кислую реакцию среды ввиду наличия непротонированной карбоксильной группы. Кислотные свойства гиалуроната позволяют получать растворимые в воде соли с щелочными металлами. Гиалуроновая кислота - это анионный линейный полисахарид с различной молекулярной массой 105-107Да. Молекулярная масса зависит от способа получения, причем, ввиду отсутствия изомерии, получаемый гиалуронат всегда химически идентичен стандартному.

Растворы гиалуроновой кислоты 1-4% образуют псевдогели. В водной среде сила кислотности карбоксильной группы (pK) составляет порядка 3-4, поэтому, для сохранения электронейтральности в растворе, молекулу окружают положительно заряженные катионы металлов, Na+, K+, Мg2+ и Ca2+, что приводит к формированию прочной гелевой структуры с большим содержанием воды. С тяжелыми металлами и красителями дает нерастворимые в воде комплексы. Кроме того, гиалуронат специфически реагирует с белками и в результате дает нам сложные гелеобразные комплексы, нередко выпадающие в осадок .

В водном растворе гиалуроновая кислота имеет достаточно большие значения продольного размера полисахаридной цепи - примерно 1 нм, поэтому, находясь в организме млекопитающих, гиалуроновая кислота принимает наиболее компактную форму. Посредством рентгеноструктурного анализа, выяснено, что гиалуронат может формировать левую ординарную и двойную спирали, различные многонитевые плоские структуры, а также сверхспирализованные структуры с вариациями концентраций в различных частях цепи, формирующие плотную молекулярную сетку, что и составляет вторичную структуру полисахарида. Это, в основном, обусловливается образованием водородных связей, связыванием с катионами щелочных металлов и гидрофобными взаимодействиями. Третичная структура гиалуроновой кислоты - это сетка, обладающая высокими реологическими свойствами (домены отталкиваются друг от друга), способная поглощать значительное количество воды и электролитов, а также большие молекулы белков, однако точно определенного размера пор третичная структура не образует. Сети имеют весьма четкую упорядоченность, ввиду наличия электронных эффектов по функциональным группам и по заместителям. При этом молекула принимает наиболее энергетически выгодное положение, которое также зависит от ионного окружения .

3. Гиалуроновая кислота в природе, функции гиалуроната в зависимости от гистологической и цитологической принадлежности у различных организмов

Наличие гиалуронатсинтетаз и гиалуроновых кислот в капсулах вирусов и бактерий родов Streptococcus можно объяснить, как адаптативное эволюционное приспособление, которое бактерии и вирусы позаимствовали у высших животных, тем самым увеличив свою способность преодолевать иммунный ответ хозяина.

3.1 Гиалуроновая кислота в тканях млекопитающих

Гиалуронат - основной компонент межклеточного матрикса различных тканей млекопитающих, однако распределен неравномерно. Так, например, максимальная концентрация содержания гиалуроновой кислоты в теле человека наблюдается в синовиальной жидкости, пупочном канатике, стекловидном теле глаза и коже .

В коже глюкозоаминогликан содержится в интерстициальном пространстве и выполняет ряд функций: удерживает воду, тем самым поддерживает естественную эластичность и объём кожи, что так важно при воспалительных реакциях; участвует в процессах пролиферации и дифференциации кератиноцитов и иммунокомпетентных клеток, тем самым играет роль в поддержании нормального процесса роста и регенерации кожных покровов и осуществлении местного иммунитета, укрепляет волокна коллагена (рис. 2); служит естественным барьером, защищающим от действия свободных радикалов, болезнетворных агентов и химических веществ .

Рис. 2. Воздействие гиалуроновой кислоты на коллагеновые волокна.

При недостатке естественной гиалуроновой кислоты, например, при старении или заболеваниях кожи, развиваются дегенеративные нарушения: снижается местный иммунитет, ранозаживляющая способность, эластичность кожи, что ведёт к возникновению морщин. В хрящевой ткани ГК выполняет функцию структурного элемента матрикса, необходимого для связывания и удержания хондроитинсульфатпротеогликана для укрепления коллагенового каркаса хряща . В синовиальной жидкости гиалуронат обеспечивает смазку для подвижных частей сустава, уменьшая их износ. При воспалительных заболеваниях суставов (артритах), снижается количество гиалуроновой кислоты, уменьшается вязкость синовиальной жидкости, что ведет к ухудшению движения. Также гиалуроновая кислота играет важную роль в эмбриогенезе, является передатчиком сигналов клеточной подвижности.

Таким образом, функции гиалуроната весьма обширны, и по мере дальнейшего расширения сферы изучения ее свойств, будут открываться все новые факты о роли глюкозоаминогликана в организме человека и млекопитающих .

3.2 Гиалуроновая кислота как компонент капсул бактерий

4. Метаболизм гиалуроновой кислоты

Синтез гиалуроновой кислоты достаточно хорошо изучен. Для млекопитающих и бактерий родов Streptococcus и Pasteurella биохимия процесса принципиально не отличается. Для синтеза гиалуроновой кислоты необходимы компоненты полимера: глюкуроновая кислота и N-ацетилглюкозамин. Глюкуроновая кислота синтезируется посредством ряда ферментативных реакций из глюкозо-6-фосфата (рис. 3).

Рис. 3. Схема синтеза глюкозоаминогликанов

Глюкозо-6-фосфат под действием фермента α-фосфоглюкомутазы изомеризуется в глюкозо-1-фосфат. Далее фермент УДФ-глюкозопирофосфорилазы катализирует образование УДФ-глюкозы из уридиндифосфата и глюкозы. После происходит ферментзависимое окисление гидроксогрупп УДФ-глюкозы под действием фермента УДФ-глюкозодегидрогеназы. Результат - образование глюкуроновой кислоты.

N-ацетилглюкозамин синтезируется из фруктозо-6-фосфата. При биосинтезе аминосахара происходит перенос аминогруппы на фруктозо-6-фосфат. Донор аминогруппы - глютамин, фермент амидотранфераза. Результат - образование глюкозамина-6-фосфата, который изомеризируется мутазой в глюкозамин-1-фосфат, который подвергается ацетилированию при участии фермента ацетилтрансферазы в присутствии КoA до N-ацетилглюкозамин-1-фосфата, который необходимо активировать пирофосфорилазой до УДФ-N-ацетилглюкозамин-1-фосфата. Это энергозатратный процесс.

Последней стадией синтеза гиалуроновой кислоты будет осуществление гликозидтрансферазной реакции при помощи единственного фермента гиалуронатсинтетазы. Этот процесс также происходит с затратой энергии АТФ (на синтез 1 моля гиалуроната расходуется 2 моль АТФ) .

4.1. Гиалуронатсинтетазы: строение, функции, локализация, кинетические характеристики и механизмы катализа

Гиалуронатсинтетаза - металлопротеин молекулярной массы 49 кДа, фермент, требующий катионы металлов для координации с фосфатными группами (активации) и использующий глюкозидфосфаты в качестве субстратов. Является единственным в своем роде ферментом, катализирующим синтез гиалуроновой кислоты в организме млекопитающих и в клеточной стенке гемолитического стрептококка, а также у вируса PBCV-1 и бактерии Pasteurella multicida . Исследования, проведенные в 50-е годы, в лаборатории Meyer позволили установить характерные особенности фермента гиалуронатсинтетазы: функционирует при нейтральных значениях pH, для катализа требует активированные посредством конъюгации с уридиндифосфатом глюкуроновую кислоту и N-ацетилглюкозамин, а также присутствие катионов Mg2+ и Mn2+ для координирования фосфатных групп. Фермент проявляет высокую активность в присутствии кардиопина (находится в комплексе). Тип 1 был изучен в 1983-1998 г. Prehm и Asplund, характерен для гемолитического стрептококка млекопитающих: гиалуронатсинтетаза синтезирует гиалуроновую кислоту посредством присоединения углеродных остатков к восстанавливающему концу гиалуроната, при этом чередуются β(1-3) и (1-4)гликозидные связи .

4.2. Ферменты, осуществляющие деполимеризацию гиалуроновой кислоты

Катаболические реакции гиалуроновой кислоты основаны на ферментативном катализе посредством гиалуронатлитических ферментов. Гиалуронатлиазы были классифицированы в 1971 году в лаборатории Meyer . Концепция данной классификации предельно проста: фермент - катализируемая реакция - продукт реакции. В соответствии с данной классификацией выделяют три различных вида гиалуронидаз (гиалуронатлиаз):

Гиалуроноглюкозаминидазы (гиалуронидазы млекопитающих) - эндо-β-N-ацетилгексоаминидазы, расщепляют гиалуроновую кислоту до тетра- и гексасахаридов.

Гиалуроноглюкозаминидазы не облалают субстратной специфичностью, а также способны формировать поперечные сшивки между молекулами гиалуроната и хондроитинсульфата. Одной из дополнительной функции гиалуронидаз в организме млекопитающих является расщепление гиалуроната до дисахаров для получения энергии .

Гиалуронатлиазы (гиалуронидазы бактерий) - это эндо-β-ацетил-гексоаминоэлиминазы, гидролизирующие гиалуронат до 4,5-ненасыщенных дисахаров. Обладают высокой специфичностью к субстрату. У бактерий гиалуронидазы являются фактором патогенности, необходимой для инвазии и адгезии бактерий (для проникновения в организм млекопитающего).

5. Получение гиалуроновой кислоты

Все известные способы получения гиалуроновой кислоты можно разделить на две группы: физико-химический метод, который заключается в экстрагировании гиалуроната из тканей животного сырья млекопитающих, других позвоночных животных и птиц; и микробный метод получения ГК на основе бактерий-продуцентов.

5.1. Физико-химический способ: экстракция из животного сырья

Как было сказано ранее, гиалуроновая кислота встречается во многих тканях млекопитающих и птиц, и, в зависимости от гистологической принадлежности, содержание гиалуроновой кислоты и ее молекулярная масса могут варьировать. Кроме того, в различных тканях гиалуронат может находиться в комплексах с белками и родственными полисахаридами, что затрудняет его очистку с последующим выделением. В настоящее время для промышленного получения используют пупочные канатики новорожденных и гребни кур. Однако, кроме вышеперечисленных методов, описаны разнообразные способы выделения гиалуроната на основе стекловидного тела глаз крупного рогатого скота, синовиальной жидкости, суставных сумок, свиной кожи, плазмы крови и хрящевой ткани . При выделении биополимера прибегают к различным приёмам выделения: гомогенизация, экстракция, фракционное осаждение и т.п.

Любая процедура выделения гиалуронана включает предварительное разрушение органов и тканей, содержащих биополимер, и белково-углеводных комплексов. Разрушение достигается посредством методов измельчения и гомогенизации . После полученный гомогенат подвергают экстракции с использованием водно-органических растворителей. Ковалентно-связанные примеси пептидов удаляют методом ферментативного протеолиза, посредством обработки протеазами (папаином) или химической денатурацией (хлороформ, амиловый спирт с этанолом). Следующий этап — это адсорбция на активированном угле, посредством электродиализа. От примесей мукополисахаридов биополимер очищают методом осаждения хлоридом цетирпиридиния или посредством ионообменной хроматографии.

Наибольшее распространение, в силу доступности сырья и высокого содержания биополимера, получил метод выделения гиалуроновой кислоты из петушиных гребней. Экстракция производится смесью ацетона с хлороформом (удаление белка), водой, либо водно-спиртовой смесью (пропионовый, трет-бутиловый спирты) с последующей сорбцией на активированном угле, посредством электрофореза или на ионообменной смоле .

5.2. Микробный синтез, продуценты гиалуроновой кислоты

Экономически более выгодным является метод микробного синтеза гиалуроновой кислоты на основе бактериальных штаммов-продуцентов. Такой синтез при введении его в масштабы производства, будет иметь меньше издержек, таких как затраты на животное сырье и зависимость от сезонных поставок. И, напротив, производство гиалуронана на основе микробного синтеза позволит масштабировать производство и получить продукт высокой степени очистки, не содержащий примесей, а, следовательно, имеющий низкую аллергенность . С момента открытия способности бактерий к синтезу гиалуроновой кислоты, постоянно ведутся исследования возможности получения искомого полимера биотехнологическим путем, т. е. путем культивирования бактерий-продуцентов на питательных средах определенного состава в строго заданных условиях с последующим выделением целевого продукта. К продуцентам гиалуронана можно отнести капсулообразующие бактерии родов Streptococcus и Pasteurella . К штаммам-продуцентам предъявляется ряд требований:

Отсутствие патогенности и, особенно, гемолитической активности;

Способность к синтезу высокомолекулярной гиалуроновой кислоты;

Большие размеры капсул с высоким содержанием биополимера (капсулы при этом должны легко отделяться, желательно при экстракции);

Отсутствие гиалуронидазной активности, чтобы исключить потери целевого продукта;

Высокая способность к росту, при этом наиболее полное использование субстрата;

Сохранение стабильности физиолого-биохимических свойств.

Исследования в области поиска штамма, способного удовлетворить потребности в биополимере и соответствующего всем параметрам, привели к Streptococcus equi surbsp. equi. и Streptococcus equi surbsp. zooepidеmiсus .

Дикие типы стрептококков синтезируют внеклеточные белки, что снижает выход биополимера. Поэтому для получения воспроизводительных гиалуронидазанегативных, не гемолитических штаммов, проводили их модификацию посредством химического и УФ-индуцированного мутагенеза или ненаправленного мутагенеза с последующей селекцией. Генно-инженерные штаммы кишечных палочек, полученные на основе методов экспрессии оперонов, кодирующих синтез гиалуронатсинтетазы стрептококков на матрицу бактерий, в настоящее время не применяются, ввиду низких показателей выхода биополимера. Исключением можно считать генно-инженерный штамм Bacillus subtilis, показывающий высокие результаты выхода биополимера, при росте на сложных ферментированных средах .

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов Streptococcus zooepidemicus. Типичный состав синтетической питательной среды для бактерий рода Streptococcus, синтезирующих гиалуроновая кислоту, приведен ниже.

Источник углевода и энергии: глюкоза - 1000; аминокислоты: DL-аланин, L-аргинин, L-аспарагиновая кислота, L- цистин, L-цистеин, L-глютаминовая кислота, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, гидрокси-L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин, L-валин по 100; витамины: биотин - 0,2, фолиевая кислота - 0,8, никотинамид - 1, никотинамидадениндинуклеотид - 2,5, пантотенат кальция - 2, пиридоксаль — 1, пиридоксамин гидрохлорид - 1, рибофлавин — 2, тиамин гидрохлорид - 1; нуклеотиды: аденин - 20, гуанин гидрохлорид - 20, урацил - 20; соли органических и неорганических кислот: FeS04*7H20 - 5, Fe(N03)2*9H20 - 1, К2НР04 - 200, КН2Р04 - 1000, MgS04*7H20 - 700, MnS04 - 5, СаС12*6Н20 - 10, NaC2H302*3H2O - 4500, NaHC03 - 2500, NaH2P04*H20 - 3195, Na2HP04 - 7350.

Культивирование бактерий pода Streptococcus с целью получения ГК осуществляется, как правило, в периодических условиях. Питательную среду готовят однократно, растворяя необходимые компоненты среды в воде, после чего среду стерилизуют. Источник углерода стерилизуется отдельно. После засева за ходом ферментации следят по потреблению субстрата, росту концентрации клеток, образованию продукта (ГК), продуктов метаболизма, изменению рН среды. Максимальная концентрация ГК составляет приблизительно 5 г/л. Дальнейший рост содержания в среде ГК ведет к многократному возрастанию вязкости КЖ, резкому ухудшению массообменных характеристик процесса ферментации, трудностям при аэрировании и перемешивании. Концентрация ГК при периодической или периодической с подпитками по субстрату ферментации достигает заданного значения за 6 - 26 часа. Как правило, после выхода культуры в стационарную фазу процесс завершают. Клетки микроорганизмов инактивируют прогреванием при 60 - 80 °С. Биомассу отделяют одним из хорошо известных способов - флокуляцией, сепарированием, центрифугированием, фильтрованием. ГК из КЖ осаждают органическими растворителями или катионными ПАВ. Очистку проводят с помощью ультрафильтрационных методов, переосаждения или хроматографией.

Данные методы принципиально не отличаются от методов выделения ГК из животного сырья, описанных ранее. Например, в патенте на метод получения ГК описан следующий способ культивирования штамма-продуцента и выделения ГК. Ферментацию осуществляли в биореакторе на 3 л (коэффициент заполнения ферментера 0,5) на среде состава: 2,0 % глюкозы, 0,5 % ДЭ, 1,5 % пептона, 0,3 % КН2Р04, 0,2 % К2НР04, 0,011 % Na2S203, 0,01 % MgS04 * 7Н20, 0,002 % Na2S03, 0,001 % СоС12, 0,001 % MnCl2 и 0,5 % соевого масла; рН среды 7,0. Стерилизация среды осуществлялась глухим паром 120 °С в течение 15 мин. После охлаждения до комнатной температуры вносился инокулят культуры S. zooepidemicus штамм Ferm ВР-878 в количестве 0,1 л. Аэробное культивирование (расход воздуха 0,7 л/(л*мин) длилось 26 часов при постоянном термостатировании (35 °С) и перемешивании среды (300 об/мин). рН среды поддерживался постоянным на уровне 7,0. На 24-ом часу культивирования в асептических условиях вносилась подпитка по субстрату - 100 мл 50 % раствора глюкозы. Процесс завершали по прошествии 26 часов культивирования.

Для выделения ГК проводили следующие процедуры. К бактериальной культуре добавляли 3,2 л дистиллированной воды. После тщательного и длительного перемешивания биомассу отделяли центрифугированием. Супернатант концентрировали до 1,6 л на ультрафильтрационном половолоконном аппарате и проводили диализ против дистиллированной воды. В образовавшийся раствор вносили ацетат натрия до конечной концентрации 0,5 % и проводили осаждение 5 л этилового спирта. Осадок полисахаридов отделяли центрифугированием. Очистку ГК проводили, растворяя полученный осадок в дистиллированной воде (0,5 л) и добавляя 4 % водный раствор бромида цетилпиридиния. Осадок связанной с катионным ПАВ ГК отделяли и растворяли в 40 мл 0,3 М раствора хлорида натрия. Нерастворенную часть осадка отбраковывали. К раствору добавляли 120 мл этанола для осаждения ГК. Осадок отделяли и растворяли в дистиллированной воде, после чего проводили очистку на ионообменной смоле и повторное спиртоосаждение. Выход очищенного гиалуроната натрия с одной ферментации составлял 7,8 г. Содержание белка в препарате составляло менее 0,05 %. Молекулярная масса ГК равнялась 1,005 МДа .

Другие способы биотехнологического получения ГК, описанные в патентах, незначительно отличаются составом сред.

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов бактерий Bacillus subtilis. К способам получения гиалуроновой кислоты, относится метод биосинтеза ГК на основе генно-модифицированного штамма Bacillus subtilis, содержащий генетическую конструкцию, включающую промотор, функционально активный в указанной клетке, и кодирующую область, состоящую из нуклеотидной последовательности, кодирующей стрептококковую гиалуронансинтазу (hasA); последовательности, кодирующей UDP-глюкозо-6-дегидрогеназу Bacillus (tuaD) или аналогичный фермент стрептококкового происхождения (hasB), и последовательность, кодирующую бактериальную или стрептококковую UDP-глюкозопирофосфорилазу.

Метод включает культивирование клетки-хозяина Bacillus в условиях, подходящих для продуцирования гиалуроновой кислоты, при этом клетка-хозяин Bacillus содержит конструкцию нуклеиновой кислоты, включающую последовательность, кодирующую гиалуронансинтазу, функционально связанную с промоторной последовательностью, чужеродной в отношении последовательности, кодирующей гиалуронансинтазу; и извлечения гиалуроновой кислоты из среды культивирования .

6. Применение гиалуроновой кислоты

Гиалуроновая кислота - вещество с огромным спектром действия, и поистине удивительными свойствами. Спустя несколько лет после открытия гиалуроновой кислоты начинается разработка препаратов на основе глюкозоаминоликана для наружного применения в качестве средства, повышающего регенеративные и барьерные функции кожи. Однако, как известно, субстанция, изготовленная из животного сырья, требует тщательной очистки от примесей, что накладывает дополнительные издержки производства и отражается на цене конечного продукта . Действительно высокая себестоимость гиалуроновой кислоты долгое время препятствовала расширению спектра применения биополимера, однако постепенное увеличение знаний о свойствах полимера и внедрение биотехнологических методов на основе микробного синтеза, позволило существенно снизить себестоимость субстанции, подталкивает развитие разнообразных приложений, в которых находит применение гиалуроновой кислоты в областях медицины, пищевой, фармацевтической, космецевтической промышленности. Ведутся исследования по созданию лекарственных препаратов и БАД на основе гиалуроната с противовоспалительным, иммуномодулирующим и пролонгирующим действием, которые, возможно, в будущем можно будет применять в качестве основы терапии заболеваний в онкологии, оториноларингологии, хирургии, эндокринологии и многих других сферах человеческой деятельности .

6.1. Гиалуроновая кислота в медицине

Гиалуроновая кислота обладает антимикробным и регенерирующим действиями, поэтому на основе ее разработаны препараты для эффективной терапии поражений кожи. Созданные изначально как препараты против ожогов, данная группа активно применяется при терапии трофических нарушений кожного эпителия посттромботического генеза. Доказано, что низкомолекулярная гиалуроновая кислота (менее 10 кДа) оказывает ангиогенное действие, тем самым снижая образование спаек и разрастание соединительной ткани, так же улучшает микроциркуляцию и снижает эффекты воспаления .

Гиалуронат имеет свойства повышать активность интерферона, тем самым проявляя выраженное противовирусное действие. Была доказана высокая активность препаратов на основе гиалуроновой кислоты в отношении вируса герпеса и некоторых других. По данным некоторых источников высокомолекулярная гиалуроновая кислота является пролонгатором действия других БАВ, растворенных в ней Лекарственные вещества, за счет высокой вязкости гиалуроната, выделяются в ткани в течение длительного времени. Создается так называемое депо, из которого БАВ постепенно диффундирует в среду организма. Это позволяет увеличить терапевтическую широту, потенцировать в некоторых случаях фармакологический эффект, снизить побочные эффекты, а также расширить возможности применения других лекарственных веществ (стероидных препаратов, антибиотиков, пептидов, НПВС и т.д.) в комбинации с гиалуроновой кислотой. Широко применение гиалуроната в хирургии:

1. Офтальмологическая хирургия - гиалуронат натрия используется в качестве репаративного средства при оперативных вмешательствах на эндотелиальном слое роговицы (удаление катаракты).

2. Хирургическая травматология - при хирургических операциях с обширным сечением хрящевой ткани и осложненных артритах используется в качестве регенерирующего, смазывающего, противовоспалительного и анальгезирующего средства .

6.2. Гиалуроновая кислота в косметологии

Применение гиалуроната и его солей в косметологии основывается на способности гиалуронатсодержащих препаратов оказывать местное противовоспалительное, ранозаживляющее и иммуномодулирующее действие. Способность задерживать в межклеточном пространстве воду является основой механизма коррекции возрастных деформаций кожи. На данный момент в косметологической практике стали весьма популярны инъекции 1-3% водного раствора гиалуроновой кислоты для внутри- или подкожного введения. Введение гиалуроновой кислоты в эпителий в виде водного геля повышает эластичность и упругость тканей, тем самым придавая коже прежние качества и красоту . Однако широчайшее применение высокомолекулярный гиалуронат получил при изготовлении различных комбинированных кремов и гелей для наружного применения. Данный вид продукции имеет ту же направленность, что и инъекции - восстановить реологические свойства кожи, тем самым предотвратить образование морщин, прыщей и т.д. .

Гиалуроновая кислота обладает свойствами, которые делают ее крайне подходящей для использования в качестве дермального филлера: она способна связывать большое количество воды, присутствует в коже в естественных условиях и не склонна вызывать нежелательные реакции. Филлеры (Fill — от англ. — наполнять) - это инъекционные кожные наполнители, которые используются в косметологии для уменьшения глубины морщин, носогубных складок и складок в уголках рта . Филлеры также используются для придания дополнительного объема лицу в области скул, щек и губ В настоящее время широкое распространение получила группа ГК- филлеров семейства Surgiderm и Juvederm Ultra А. Surgiderm и Juvederm Ultra представляют собой однородные монофазные гели гиалуроновой кислоты неживотного происхождения. Они являются одними из наиболее пластичных материалов для инъекционной контурной пластики, что определяет не только легкость их введения, но и равномерное распределение в тканях, позволяет полностью исключить контурирование материла .

Современная серия препаратов на основе гиалуроновой кислоты PRINCESS®. «PRINCESS® Filler» представляет собой стерильный, биодеградируемый, вязкоэластичный, прозрачный, бесцветный, изотонический и гомогенизированный гелевый имплантат для интрадермальных инъекций. Содержащаяся в «PRINCESS® Filler» гиалуроновая кислота с поперечно-сшитой структурой продуцируется бактериями Streptococcus equi, представлена в виде раствора с концентрацией 23 мг/мл в физиологическом буфере .

Заключение

Гиалуроновая кислота - продукт животного происхождения, имеющий поистине удивительные свойства и высочайший спектр применения как сейчас, так и в перспективе дальнейшего ее использования. Поэтому совсем не удивительно, что ее свойства изучаются во всем мире.

В настоящее время исследуются процессы и механизмы действия гиалуроновой кислоты на ткани организма. Выдвигаются гипотезы относительно роли гиалуроната и родственных глюкозоаминогликанов в процессах пролиферации, дифференциации, миграции животных клеток в процессах иммунного ответа и эмбриогенеза, а также делаются попытки по установлению связи между молекулярной массой, степенью очистки и эффективностью препаратов.

Физико-химический способ, в виду своей экономической нерентабельности, постепенно уступает место биотехнологическому методу синтеза биополимера. Были проведены поиски продуцентов, соответствующих всем параметрам, а также различного рода испытания на предмет изучения метаболизма гиалуроновых кислот. Результатом исследования служило выявление прямая связи между способностью синтеза гиалуроновых кислот и наличием специфических ферментов гиалуронатсинтетаз.

В последние 20 лет оперон, кодирующий синтез гиалуронатсинтетаз, был выделен в чистом виде и неоднократно экспрессировался различным видам микроорганизмов с целью получения генно-модифицированных штаммов-продуцентов гиалуроновых кислот. Однако результата не могли добиться очень долгое время. Генно-модифицированные штаммы производили неактивную форму фермента, следовательно, способностью к продукции гиалуроновых кислот не обладали. Но недавно проведенные исследования по созданию генно-модифицированного штамма на основе бактерий Bacillus sibtilis показали хорошие результаты. Штаммы бактерий активно синтезировали гиалуронат высокой молекулярной массы, лишенной пептидных включений и связей с родственными мукополисахаридами.

Однако поиск штаммов-продуцентов сейчас продолжается. Проверяются возможности синтеза гиалуроната бактериями рода Streptomyces, и ведется разработка биотехнологии на их основе; кроме того, изучаются пути использования и внедрения гиалуроната во все сферы жизнедеятельности общества.

Библиографическая ссылка

Савоськин О. В., Семенова Е. Ф., Рашевская Е. Ю., Полякова А. А., Грибкова Е. А., Агабалаева К. О., Моисеева И. Я. ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ МЕТОДОВ ПОЛУЧЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ // Научное обозрение. Биологические науки. – 2017. – № 2. – С. 125-135;
URL: https://science-biology.ru/ru/article/view?id=1060 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Текст: Адэль Мифтахова

Даже далёкому от мира косметики человеку сложно было не заметить, что в последние годы словосочетание «гиалуроновая кислота» звучит из каждого утюга. При этом используют её самыми разными способами и в пластической, и глазной хирургии, и для лечения суставов, и в форме инъекций и кремов, и даже пьют в виде БАД и напитков. Мы попросили автора Telegram-канала Don’t Touch My Face Адэль Мифтахову разобраться, как и почему гиалуроновая кислота покорила мир и в чём, собственно, её сила.

Первое упоминание о гиалуроновой кислоте относится к 1934 году, когда биохимик Карл Мейер опубликовал статью об обнаруженном им в стекловидном теле глаз коров полисахариде с крайне высокой молекулярной массой. С тех пор было проведено огромное количество исследований этого вещества, а в 2009 году в специализированном журнале International Journal of Toxicology вышла монументальная статья, суммирующая результаты этих исследований и признавшая гиалуроновую кислоту любого происхождения и её производные безопасными для использования . Первое время гиалуроновую кислоту добывали преимущественно из гребней петухов и она имела исключительно животное происхождение. К счастью, позже было открыто несколько методов синтеза гиалуроновой кислоты в промышленных объёмах с помощью бактерий, которые вырабатывают её в определённых условиях.

Несмотря на своё название гиалуроновая кислота - это не кислота в бытовом её понимании, она не имеет растворяющих или отшелушивающих свойств, как, например, гликолевая. Сама по себе гиалуроновая кислота является естественным компонентом тел млекопитающих, она присутствует во множестве тканей, но наибольшая её концентрация встречается в соединительной ткани суставов. В самом простом понимании гиалуроновая кислота - это сахар, но если молекулярная масса столового сахара около 340 дальтонов (Да), то гиалуроновой кислоты - от 600 тысяч до нескольких миллионов Да. Благодаря своей структуре и большой молекулярной массе её молекулы способны удерживать количество воды, во много раз превышающее их собственное. Именно поэтому в нашем теле гиалуроновая кислота выполняет очень важную функцию сохранения воды в тканях, а также выступает смазывающим веществом для суставов.

Главный миф о гиалуроновой кислоте гласит: размер молекул не позволяет
ей проникать глубоко в кожу

В современной медицине гиалуроновая кислота признана эффективным средством для лечения артрита при введении её напрямую в сустав и используется в глазной хирургии при лечении катаракты и замене роговицы. В последнее время производители также выпускают большое количество пищевых добавок с гиалуроновой кислотой, но её эффективность при приёме внутрь до сих пор не доказана . Как косметический ингредиент гиалуронка (так ласково прозвали вещество обыватели) стала применяться с 80-х годов прошлого века и сегодня используется главным образом двумя способами: как увлажняющий компонент косметики и как филлер при контурной пластике лица, то есть для разглаживания морщин, придания дополнительного объёма и коррекции формы губ, скул и других зон лица.

Магия гиалуроновой кислоты, благодаря которой она и прославилась на весь мир, заключается в её способности притягивать и удерживать воду так, как это не делает ни одно другое вещество. Её молекула - это соединение глюкуроновой кислоты и N-ацетилглюкозамина. Она содержит большое количество кислорода и гидроксильных групп, что позволяет ей формировать сильные водородные связи с водой. Проще говоря, каждая молекула гиалуроновой кислоты - это крошечная губка, которая удерживает воду, что делает её уникальным средством для увлажнения кожи и тканей.

Однако полезные свойства гиалуроновой кислоты не ограничиваются одним лишь увлажнением. С возрастом наш организм вырабатывает всё меньше и меньше гиалуроновой кислоты, этот факт в своё время послужил поводом для её исследования в качестве антивозрастного компонента. Действительно, немецкие дерматологи заметили значительное уменьшение морщин и повышение эластичности кожи при использовании геля гиалуроновой кислоты на поверхности кожи. Исследователи Центра дерматологии и лазерной косметологии из Южной Каролины также доказали эффективность солей гиалуроновой кислоты в лечении себорейного дерматита и раздражений. Впрочем, все эти исследования не объясняют главного - каким именно образом гиалуроновая кислота лечит кожу; учёным только предстоит разобраться во всех тонкостях её воздействия.


На фоне растущего с каждым годом выбора гиалуроновых лосьонов, кремов и сывороток гиалуронка неизбежно обросла множеством мифов. Так, самый популярный из них гласит: ухаживающая косметика с гиалуроновой кислотой не работает, потому что размер её молекул не позволяет ей проникать глубоко в кожу. И в теории это действительно так. Диаметр молекулы гиалуроновой кислоты - около 3000 нм, в то время как расстояние между клетками кожи не превышает 50 нм. Однако, авторы блога The BeautyBrains рассказывают о том, что водоудерживающим компонентам совершенно необязательно проникать в кожу для того, чтобы увлажнять её верхние слои. Для этого им просто нужно находиться на поверхности кожи длительное время - и этого будет вполне достаточно.

Ещё более интересно то, что в 1999 году сотрудники отделения биохимии и молекулярной биологии австралийского Университета Монаша исследовали способности проникновения гиалуроновой кислоты в кожу на мышах и на людях с помощью радиоактивной метки. В результате было доказано , что молекулы гиалуроновой кислоты не только проникают в верхние слои кожи, но и достигают дермы, подкожной жировой клетчатки, а её следы были обнаружены даже в крови.

В последние годы учёные разработали метод получения солей гиалуроновой кислоты - sodium hyaluronate и potassium hyaluronate. Их также иногда называют низкомолекулярной, или гидролизованной гиалуроновой кислотой. Эти соли получают путём удаления из молекулы гиалуроновой кислоты липидов, протеинов и нуклеиновых кислот с сохранением её водоудерживающей способности. В результате размер молекулы значительно уменьшается (до 5 нм), что позволяет веществу проникать в кожу легче, чем обычная гиалуроновая кислота, и увлажнять её на глубоком уровне. Более того, многочисленные исследования способности проникновения солей гиалуроновой кислоты в кожу доказали : они способны не только сами проникать в глубокие слои кожи и увлажнять её, но и выступать в качестве проводника для других веществ.

Если эффективность гиалуронки в увлажнении кожи любого типа доказана, то её антивозрастные и лечебные свойства учёным ещё предстоит изучить

Несмотря на то, что гиалуроновая кислота и её производные имеют доказанную безопасность, в редких случаях при её использовании на коже может проявляться аллергия. Как и при любой другой аллергической реакции, все эксперименты в такой ситуации нужно прекратить. Да, обидно, но, к счастью, гиалуроновая кислота не единственный водоудерживающий компонент, который добавляют в косметику. Аналогичными свойствами обладают глицерин, мочевина, AHA-кислоты в низких концентрациях и некоторые другие . Они также способны удерживать воду, пусть и в гораздо меньшем объёме, чем гиалуроновая кислота, но зато и стоят существенно дешевле.

Другой популярный способ применения гиалуронки в косметологии - инъекции. Сразу оговоримся, что все инвазивные процедуры должен назначать дерматолог, он же расскажет о том, что именно показано и противопоказано конкретно вам. Мы же расскажем о том, какие методики с участием гиалуроновой кислоты в принципе существуют. Одна из самых популярных процедур - это мезотерапия и, в частности, которая призвана повысить уровень увлажнённости кожи, стимулировать выработку коллагена и эластина, а также разгладить мелкие морщинки.

Словосочетание «гиалуроновая кислота» не слышал, наверное, только мёртвый. За последние годы эта молекула просто захватила мир: «гиалуронку» (как её ласково называют поклонники) мажут, колют, глотают в таблетках и пьют в коктейлях – и всё ради молодости и красоты. Что же это за волшебное средство и правда ли, что мы, наконец, нашли молодильное яблочко? Давайте разбираться.

Что это такое?

Гиалуроновая кислота (ГК) – это не кислота в том значении, в котором мы обычно понимаем это слово: она не способна что-то растворить или отшелушить кожу (как, например, гликолевая или молочная). Это вещество естественным образом производится нашим организмом во множестве тканей, но больше всего в суставах.

В упрощенном понимании гиалуроновая кислота – это сахар, но с большой молекулярной массой, благодаря которой одна молекула ГК может притянуть и связать тысячу молекул воды. В нашем теле гиалуроновая кислота выполняет крайне важную задачу: сохранить воду в тканях. А увлажнённая кожа равно упругая кожа. Вот и всё волшебство.

Почему её используют в косметологии?


С возрастом в организме вырабатывается всё меньше и меньше гиалуроновой кислоты: в период с 25-ти до 50-ти лет её становится вдвое меньше. Ультрафиолет также снижает выработку «гиалуронки». Соответственно, вода уходит из кожи, из-за чего она становится вялой и морщинистой. Собственную ГК организм вырабатывать в прежних количествах не заставить, но зато можно ввести новую, искусственную порцию.

Как добывают гиалуроновую кислоту?

В прошлом веке ГК получали из рыбы или (страшно представить) из петушиных гребней. К счастью, этот варварский способ остался в прошлом, поскольку нашелся простой способ синтезировать гиалуроновую кислоту в лабораториях. В искусственном препарате нет бактерий, по составу он полностью идентичен «родной» кислоте, поэтому у него фактически нет противопоказаний.

Как работает крем с гиалуроновой кислотой?

На самом деле, это очень спорный момент – работают ли они вообще. Учёные и косметологи разделились на два лагеря: одни говорят, что размер молекулы ГК не позволяет ей проникать в кожу – и это действительно так. Диаметр молекулы гиалуроновой кислоты составляет около 3000 нм, в то время как расстояние между клетками кожи – не более 50 нм. Однако другие отвечают, что это вовсе и не нужно: находясь на поверхности кожи, гиалуроновая кислота уже, как губка, притягивает воду и тем самым увлажняет кожу.


Ещё один предмет для спора – низкомолекулярная ГК. Её создатели уверяют, что размер такой молекулы значительно уменьшен (до 5 нм), что позволяет веществу проникать в кожу и увлажнять её на глубоком уровне. По мнению других ученых, это абсурд, поскольку молекулы с малой молекулярной массой автоматически теряют способность удерживать на своей поверхности большое количество воды.

Точка в этих спорах пока не поставлена, поэтому вопрос, работают ли крема и сыворотки с гиалуроновой кислотой, остаётся открытым.

Как работают инъекции?


С помощью иглы врач-косметолог вводит препарат на основе гиалуроновой кислоты в проблемную зону (например, носогубную складку), и молекулы ГК начинают притягивать влагу с поверхности кожи в глубинные слои. Накапливаясь вокруг препарата, вода буквально выталкивает морщину изнутри. И лицо снова становится гладким и упругим.

Главный недостаток инъекций – это недолговременный эффект: процедуру нужно повторять каждые 6-12 месяцев. А вот стоимость препаратов и работы косметолога довольно высоки.

Как работают таблетки?


Скорее всего, совершенно никак. Гиалуроновая кислота – это простой полисахарид, который, попадая в ротовую полость и желудок, расщепляется на обыкновенные сахара, поэтому он никак не может попасть в кожу и оказать все те волшебные эффекты, которые обещают производители. Никакой научной базы, доказывающей эффективность БАДов с ГК у них нет, а выпускаются они по принципу «Не навредит – и то хорошо».

Гиалуроновая кислота – природный полисахарид животного происхождения. Широко распространена в природе, содержится в основном веществе многих видов соединительной и нервной ткани (в коже, связках, пуповине, сердечных клапанах, стекловидном теле глаза, роговице и др.) ибиологических жидкостей (слюне,синовиальной исуставной жидкости, и др.). В соединительной ткани дермы гиалуроновая кислота расположена между волокнами коллагена и эластина, в клетках рогового слоя – в корнеоцитах.

Таким образом, гиалуроновая кислота является одним из основных компонентов внеклеточного матрикса. Принимает значительное участие впролиферациии миграции клеток. Продуцируется некоторымибактериями(например,Streptococcus ).

Количество гиалуроновой кислоты в различных источниках может составлять до 5% сухой массы ткани. В теле человека весом 70 кг в среднем содержится ~15 г гиалуроновой кислоты.

Получение

В промышленности гиалуроновую кислоту получают двумя способами: физико-химическим и биотехнологическим.

Физико-химический способ . По этому способу гиалуроновую кислоту получают, в основном, из петушиных гребней, человеческих пуповин и глаз крупного рогатого скота. Технологическая схема получения гиалуроновой кислоты из вышеназванной биомассы включает следующие стадии:ферментативное расщепление соединительной ткани с выделением гиалуроновой кислоты илиэкстрагирование гиалуроновой кислоты из биомассы разбавленными растворами щелочи или кислоты, последующее специфическое фракционирование выделенного продукта для удаления белковых и липидных составляющих, несколько этапов очистки, осаждение и высушивание.

В последнее время гиалуроновую кислоту все чаще получают более выгодным с экономической точки зрения биотехнологическим путем из растительного сырья (пшеничный субстрат) с использованием бактериальных культур (Streptococcus zooepidermicus илиStreptococcus equi ). Этапы получения гиалуроновой кислоты по биотехнологии следующие: строго контролируемыйбиосинтез гиалуроновой кислотыбактериальными клетками (бактерии размножаются и помещаются в бродильный чан, где они синтезируют гиалуроновую кислоту в специальных условиях); выделение наработанной гиалуроновой кислоты из бактерий и ее дальнейшая очистка; осаждение и высушивание. Все процессы биотехнологического получения гиалуроновой кислоты проводят в условиях постоянного бактериологического и реологического контроля, обеспечивающего высокое качество получаемого продукта и, самое главное, заданную молекулярную массу гиалуроновой кислоты.

Химическое строение и молекулярная структура

Гиалуроновая кислота – несульфированныйгликозаминогликан. В природных условиях гиалуроновая кислота синтезируется классом встроенныхмембранных белков, называемыхгиалуронат-синтетазами . В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Считается, что эти ферменты соединяют молекулыглюкуроновой кислоты иN -ацетилглюкозамина в строго чередующемся порядке.

Структурная формула фрагмента макромолекулы гиалуроновой кислоты приведена на рис.1. Макромолекулярные цепи построены из чередующихся звеньев остатков β- D -глюкуроновой кислоты иβ- N -ацетилглюкозамина , связанныхβ-(1→4)- и β-(1→3)-гликозидными связями .

Атомы водорода СООН-групп некоторых элементарных звеньев β-D -глюкуроновой кислоты могут быть замещеныNaилиK. Такие полисахариды называют натриевой или калиевой солью гиалуроновой кислоты (гиалуронат натрия илигиалуронат калия ).

Элементарной повторяющейся единицей макромолекулы гиалуроновой кислоты является дисахаридный фрагмент. В качестве примера на рис.2 представлена элементарная единица макромолекулы натриевой соли гиалуроновой кислоты

Наиболее энергетически выгодной конформацией элементарного звена молекулы гиалуроновой кислоты является конформация кресла С1 (рис.3).

Объёмные заместители пиранозногокольца находятся в стерически выгодныхэкваториальных положениях, а меньшие по размеру атомы водорода занимают менее выгодныеаксиальные позиции.

Благодаря присутствию β-(1→3)-гликозидных cвязeй макромолекула гиалуроновой кислоты, насчитывающая несколько тысяч моносахаридных остатков, принимает конформацию спирали (рис.4).

На один виток спирали приходится три дисахаридных блока. Локализованные на внешней стороне спирали гидрофильные карбоксильные группы остатков глюкуроновой кислоты могут связывать ионы Ca 2+ .


© 2024
kropotkinkadet.ru - Портал о развитии ребенка и воспитании детей