30.11.2023

Гиалуроновая кислота — свойства и применение в косметологии. Что такое гиалуроновая кислота и почему все ею одержимы Молекулярная масса гиалуроновой кислоты


Индустрия красоты постоянно расширяет перечень косметических процедур и препаратов, которые позволяют сохранить молодость лица и устранить возрастные изменения кожи, которые неизбежно происходят с каждым человеком. Достаточно давно и эффективно в эстетической медицине применяется гиалуроновая кислота для лица, представленная в различных косметических продуктах для салонного и домашнего использования. Входит в состав косметических продуктов (крема, лосьоны, маски и другие), используется для биоревитализации лица и иных манипуляций, которые позволяют замедлить процессы старения и улучшить состояние тканей.

Насколько эффективны эти процедуры и какую роль играет гиалуронат в поддержании молодости и тонуса кожи, рассмотрим в данной статье.

Свойства, строение гиалуроновой кислоты и ее роль в коже

Данное химическое соединение было открыто в 1930 гг. Карлом Мейером и до настоящего времени интенсивно изучается медиками, химиками, фармацевтами и другими учеными на экспериментальных и биологических моделях.

Обладает уникальным физическим свойством — способна удерживать воду, образуя при этом гелеобразную структуру. Участвует в большинстве жизненно важных процессов, происходящих в организме человека и животных. Вещество образуется в организме человека, причем порядка 1/3 от общего количества гиалуроната ежедневно расщепляется и утилизируется, и этот дефицит восполняется новыми молекулами.

Представляет собой полисахарид и состоит из множества одинаковых небольших фрагментов, количество которых может быть разным. Поэтому молекула гиалуроната может иметь разную длину и массу и классифицируется на низко- средне- и высокомолекулярную.

Входит в состав многих тканей и жидкостей организма, в том числе, и в дерму:

  • удерживает коллагеновые и эластиновые волокна в правильном положении и способствует тем самым поддержанию эластичности и тургора кожи, которые являются обязательными условиями для сохранения молодости;
  • за счет связывания воды обеспечивает оптимальное содержание влаги в коже, поддерживая гидробаланс, что тоже является фактором, предупреждающим морщины и старение;
  • уменьшает испарение влаги и одновременно способствует притягиванию и удержанию на поверхности дермы воды из воздуха, увлажняя кожу и делая ее более гладкой и эластичной;
  • молекулы кислоты предотвращают проникновение патогенных микробов вглубь при наличии повреждений, таких как ранки, царапины и др.

Время «жизни» молекулы гиалуроната в эпидермисе и дерме составляет 1-2 дня.

Лучшая гиалуроновая кислота для лица – это собственная, которая вырабатывается в организме. Но с возрастом уменьшается способность синтезировать кислоту в необходимом количестве и с должной молекулярной массой, что также играет свою роль в старении. Поэтому организм нуждается в дополнительном источнике кислоты, одним из которых являются косметические препараты.

Препараты и средства с гиалуроновой кислотой

Получение гиалуроната в промышленных масштабах сегодня занимает свою нишу рынка, поскольку данный «продукт» чрезвычайно востребован и в медицине, и в косметологии. Получают кислоту двумя путями:

  1. из тканей животных;
  2. методом бактериальной ферментации.

Из животного сырья наиболее распространенным вариантом (и оптимальным) являются гребни половозрелых петухов и кур. Также используют стекловидное тело глаза, гиалиновые хрящи, синовиальную жидкость суставов, пупочный канатик животных.

Второй способ предполагает участие бактерий (чаще всего гемолитических стрептококков типов А и В), которые помещают на питательную среду и обеспечивают оптимальные условия для размножения. Бактерии вырабатывают кислоту, которую затем очищают, однако примеси белков и пептидов все равно остаются в очищенном продукте, могут провоцировать аллергические реакции, что существенно ограничивает сферу применения кислоты, полученной таким способом.

Готовая кислота выпускается на фармацевтических заводах в виде гранул и порошков, которые содержат молекулы различной массы. Это базовое сырье для получения растворов, которые стерилизуют в автоклавах и вносят в состав масок, кремов, препаратов и т.д.

Свойства препаратов гиалуроновой кислоты с различной молекулярной массой

Масса молекул гиалуроната напрямую влияет на функцию вещества и степень проникновения в ткани.

Низкомолекулярные разновидности с массой меньше 30 кДа:

  • хорошо проходят сквозь барьеры и мембраны клеток, способны проникать в глубокие слои дермы с поверхности кожи;
  • улучшают микроциркуляцию;
  • улучшают питание кожи.

Среднемолекулярные препараты с массой 30-100 кДа:

  • ускоряют заживление повреждений кожи;
  • стимулируют процесс деления клеток.

Высокомолекулярные препараты с массой молекул 500-730 кДа:

  • не способны проникать в глубокие слои дермы и увлажняют эпидермис;
  • купируют воспаление.

Поэтому для разных целей эстетической коррекции кожи следует применять правильный препарат или средство, тогда как универсального варианта, «чудодейственного коктейля 10 в 1» просто не существует!

Гиалуроновая кислота для лица: применение в эстетических целях

Это уникальное вещество широко используется в эстетической медицине, как для домашнего применения (крема, маски для лица с гиалуроновой кислотой), так и для салонных процедур.

Наиболее широко применяется для:

  • омоложения кожи;
  • устранения возрастных изменений лица;
  • устранения дефектов «минус-ткань», которые бывают после хирургических вмешательств.

Процедуры и препараты хорошо переносятся, редко вызывают аллергию и обеспечивают довольно продолжительный эффект до полутора лет. Наибольший эффект отмечается в возрастной группе 30-40 лет, а вот после 40 лет значительной коррекции возрастных изменений, к сожалению, не ожидать не стоит.

Салонные процедуры

Инъекции для лица - в эту обширную категорию входят несколько методов нехирургического (безоперационного) омоложения кожи и уменьшения проявлений возрастных изменений. Их объединяет способ введения гиалуроната в ткани кожного покрова: посредством уколов (инъекций). Все процедуры проводятся под местной анестезией.

Общими показаниями для применения препаратов гиалуроновой кислоты считаются:

  • обезвоженная, пересушенная, дряблая кожа;
  • сниженный тургор кожи;
  • нездоровый, тусклый цвет лица;
  • возрастные морщины;
  • возрастное изменение контуров лица;
  • темные круги под глазами;
  • неровный рельеф кожи;
  • тонкие, непропорциональные губы.

Лицо после гиалуроновой кислоты приобретает обновленный вид: разглаживается кожа, уменьшается выраженность морщин, улучшается тургор, повышается степень гидратации структур кожного покрова.

Мезотерапия

Мезотерапия лица гиалуроновой кислотой проводится локально, только в области, которые нуждаются в коррекции (морщины, складки). Курс включает несколько уколов, которые вводятся с временным промежутком в малых дозах. Характеризуется накопительным эффектом, которые сохраняется несколько месяцев.

Биоревитализация

Проводится по такому же принципу с разницей, что применяется большая доза высокомолекулярной кислоты и необходим всего один укол. Характеризуется как немедленным, так и отсроченным результатом. Сразу после укола наблюдается заметное разглаживание морщин, которое держится всего 1-2 недели. Далее введенный препарат разрушается специальными ферментами, и из молекулы кислоты с высокой молекулярной массой получаются короткие фрагментарные молекулы. Они и стимулируют выработку собственного гиалуроната, рост волокон эластина и коллагена, что и приводит к постепенному омоложению: улучшению тургора дермы, исчезновению дряблости и уменьшению выраженности и глубины морщин. Данный эффект наблюдается в течение полутора лет.

Биорепарация

Аналогичная биоревитализации процедура, с той лишь разницей, что препараты для ее проведения насыщаются не только гиалуронатом, но и другими веществами с биологической активностью: витаминами, минералами, аминокислотами и др. Это обеспечивает более длительный и выраженный эффект и расширяет возможности процедуры: позволяет устранить дефекты кожи, такие как шрамы, следы от прыщей.

Биоармирование

Контурная пластика лица с применением филлеров – специальных нитей высокомолекулярной гиалуроновой кислоты в локальные участки кожи, нуждающиеся в коррекции (второе название – биоармирование). Наиболее оправданным введение филлеров считается для коррекции линии скул, овала лица, для устранения мешков под глазами.

Точечные инъекции в область губ

Проводятся для увеличения объема губ и получения более четкого их контура. Эффект сохраняется на период от 8 до 18 месяцев, причем полный эффект от уколов достигается уже на второй день после процедуры.

Уколы от темных кругов

Уколы для устранения темных кругов и морщин под глазами и коррекции состояния нежной кожи вокруг глаз. Улучшают эластичность тонкой кожи, повышают увлажненность и позволяют уменьшить выраженность «гусиных лапок» - характерных мелких морщинок с наружной стороны глаз.

Примерные эффекты от описанных выше процедур можно посмотреть на фото, размещенные в галерее салонов красоты. Но следует помнить, что в каждом конкретном случае результат будет индивидуальным.

Побочные эффекты после процедур возможны в виде болезненности в местах инъекций, а также отека и покраснения кожи. Но, если уколы делает некомпетентный специалист, могут быть и более серьезные реакции, такие как воспаление в месте укола, значительная отечность и уплотнение, а при занесении патогенных микроорганизмов – серьезные инфекции кожи.

Противопоказания к проведению инъекционного введения гиалуроната

Инъекционная пластика лица гиалуроновой кислотой противопоказана в следующих случаях:

  • непереносимость основных или вспомогательных компонентов препарата;
  • беременность и период кормления грудью;
  • обострение хронических заболеваний и любые острые патологии;
  • аутоиммунные заболевания;
  • болезни соединительной ткани;
  • онкопатология;
  • гипертоническая болезнь;
  • склонность к формированию рубцов на коже;
  • нарушение свертываемости крови и лечение препаратами, влияющими на свертываемость;
  • ангиопатия диабетическая;
  • воспаления, родинки и заболевания кожи в области введения препарата.

Сыворотка, маски и крем для лица с гиалуроновой кислотой – эффективность и особенности применения

Огромный перечень косметических продуктов, которые содержат гиалуронат, предназначены для местного применения. Показаны при наличии:

  • дряблости и сниженного тургора кожи;
  • купероза;
  • расширенных пор;
  • неравномерного цвета лица;
  • неровного рельефа кожи;
  • морщин.

Чтобы достичь видимого эффекта, средства рекомендуется применять в комплексе (тоник, крем, маска и др.), регулярно и не менее 1 месяца.

В каждом средстве содержится разное количество гиалуроната. Так, сыворотка для лица отличается наибольшей концентрацией кислоты, поэтому рекомендуется при наличии выраженных изменений кожи и при необходимости достижения быстрого эффекта на начальном этапе ухода. Далее переходят на крем, содержащий высокомолекулярную или низкомолекулярную гиалуроновую кислоту:

  1. крема с высомолекулярным гиалуронатом покрывают кожу невидимой пленкой и уже из нее впитываются в эпидермис, увлажняя его и выравнивая цвет лица;
  2. средства с низкомолекулярной гиалуроновой кислотой способны проникать глубоко в кожу, что приводит к более стойкому и выраженному эффекту. Такие крема стоят дорого, поэтому к ним прибегают для уменьшения выраженности значительных возрастных изменений.

Маски выбирают по такому же принципу, как и крема, и используют их 1-2 раза в неделю.

Не рекомендуется использовать косметические препараты с гиалуронатом до 25 лет. В таком возрасте кожа вырабатывает достаточное количество собственной кислоты, и поступление ее извне может вызвать обратный эффект: кожный покров перестанет вырабатывать собственный полисахарид.

Обзор некоторых средств для домашнего использования с гиалуронатом

Либридерм с гиалуроновой кислотой для лица

Универсальный увлажняющий крем без запаха и синтетических добавок, который подходит для всех типов кожи, в том числе, для гиперчувствительной и пересушенной. Содержит повышенное количество низкомолекулярной гиалуроновой кислоты и обладает следующими свойствами: увлажняет эпидермис, восстанавливает гидробаланс дермы, выравнивает рельеф лица, улучшает цвет. Устраняет шелушение, покраснение и другие проявления гиперчувствительной кожи. Помогает устранить ранние признаки старения. Рекомендован для ежедневного ухода за областью вокруг глаз, кожи лица, шеи и зоны декольте.

Крем для лица Либридерм продается в удобном флаконе с дозатором объемом 50 мл и обойдется в 400-500 рублей. Производится в России.

Помимо крема, в линейке Либрадерм имеются другие средства с гиалуронатом, предназначенные для комплексного ухода: вода, сыворотка и другие. Отзывы о продуктах данной линейки в основном положительные, но все средства требуют комплексного и регулярного применения.

Крем Лора

Еще один косметический продукт российского производства, который относится к категории антивозрастных и содержит много активных компонентов, помимо гиалуроната: витамины, вытяжки иглицы и дикого ямса, растительные фосфолипиды, соевое масло и другие.

Туба 30 гр. обойдется в порядка 350-450 руб.

Крем Долива увлажняющий

Известный косметический концерн, позиционирующий свою косметическую продукцию как натуральные средства, не обошел вниманием и гиалуронат, помимо которого, в универсальном креме для всех возрастов содержится оливковое и масло ши, пантенол, витамин Е, микроэлементы, линалол. Отличается хорошим увлажняющим эффектом.

Баночка 50 мл стоит 700-800 руб.

Французский антивозрастной крем, содержащий 2 типа гиалуроновой кислоты (высоко- и низкомолекулярную), масло ши и баобаба, экстракт авокадо. Восполняет содержание влаги в дерме, обеспечивает упругость и мягкость и значительно улучшает цвет лица. Рекомендован для ухода за сухой кожей после 30 лет.

Флакон 40 мл стоит 1300-1400 руб.

Представляет собой нежный, быстро впитываемый мусс, особенно рекомендованный для нежной и чувствительной кожи. Содержит низкомолекулярную гиалуроновую кислоту, водоросли, глюкозамины. Очень хорошо увлажняет, стимулирует обновление кожи и синтез собственного гиалурона.

Цена флакона 50 мл – 800-900 руб.

Крем от польского производителя с выраженными увлажняющими свойствами и несколько меньшими омолаживающими. Покрывает поверхность эпидермиса дышащей пленкой, которая препятствует потере влаги.

Цена – 380-400 руб.

Крем для лица, приготовленный в домашних условиях

Альтернативным вариантом дорогостоящей продукции, которая продается в аптеке и магазинах, является вариант домашнего крема. Для его получения сначала нужно приготовить гель с гиалуроновой кислотой: соединить 0,3 гр. порошка гиалуроната с дистиллированной водой до получения кремообразной консистенции, перемешать и на 6-8 часов поместить основу в холодильник. Далее взять любой базовый крем, например, детский, добавить в него 8-10 гр. геля и хорошенько перемешать, оставить в сухом, прохладном месте на 6 часов и далее применять как обычный крем утром и вечером, только хранить его в холодильнике.

Внутреннее применение препаратов гиалуровой кислоты для кожи

В 2014 году японскими учеными в ходе рандомизированного, слепого, двойного, плацебо-контролируемого исследования доказано, что внутренний прием препаратов с гиалуронатом, как пищевой добавки, повышает уровень увлажненности кожи.

Внутреннее использование к гиалуроната, как добавки к пище, является относительно новым методом устранения сухости кожи, и наиболее широко применяется именно в Японии. Причем в последнее время данный метод позиционируется как один их альтернативных способ лечения пациентов с хронической сухостью кожи.

Первое косметическое средство с кислотой для наружного применения появилось в 1979 г., тогда как в пищу гиалуронат стали добавлять еще в 1942 г. Именно тогда Андре Балаш подал заявку на патентирование коммерческого использования гиалуроаната как заменителя яичного белка для хлебобулочного производства. В Китае и странах Западной Европы петушиный гребень, основное растительное сырье для получения гиалуроната, являлся королевским блюдом. Его употребляла Екатерина Медичи и супруга Генриха II для сохранения молодости. Сегодня пищевые добавки с гиалуроновой кислотой больше позиционируются как средства для улучшения функции коленных суставов при артрозе и в качестве профилактики данного заболевания.

В Корее и Японии продукты с гиалуронатом с одинаковой частотой применяются для поддержания здоровья суставов и кожи. Доказано, что ежедневное потребление в пищу 120-240 мг кислоты в день приводит к значительному улучшению состояния кожи лица и тела и восстановлению водного баланса.

Частично деполимеризованный гиалуронат, поступивший перорально, всасывается в желудочно-кишечном тракте. Кислота же в неизменном виде всасывается в лимфатическую систему. Оба вида гиалуроната затем попадают в кожу. Олигосахариды гиалуроновой кислоты увеличивают выработку собственного гиалурона в фибробластах и стимулируют пролиферацию клеток, что напрямую влияет на увлажненность кожи.

Безопасность перорального приема ГК различного происхождения и с разной молекулярной массой доказана в экспериментах на животных, однако, как и все инородное, поступающее в организм, требует более глубокого и тщательного изучения, а также наблюдения за состоянием здоровья пациентов в отдаленной динамике и ни в коем случае не является панацеей.

Исходя из написанного, можно сделать вывод, что средства и процедуры с гиалуроновой кислотой положительно влияют на увлажненность кожи и позволяют поддерживать оптимальный гидробаланс, особенно у женщин 30-40 лет. Однако каких-либо кардинальных улучшений состояния кожного покрова и значительного сокращения морщин, особенно женщинам старше 40 лет, ожидать не стоит.

Гиалуроновая кислота (hyaloid = стекловидный + uronic = кислота) – вещество, относящееся к группе полисахаридов, синтезируемое клетками большинства живых организмов, являющееся важным компонентом кожи, мышц, нервов и других тканей человека.

В описаниях составов косметических средств её иногда назывют «гиалурон», биохимики чаще употребляют словосочетание «гиалуронат натрия», поскольку в организме человека она присутствует в основном в форме натриевой соли.

Биологическая роль

Гиалуроновая кислота необходима для формирования межклеточного вещества, которое является средой для функционирования клеток: их деления, поступления к ним питательных веществ, выведения продуктов жизнедеятельности.

Половина всей гиалуроновой кислоты, находящейся в организме, содержится в коже. Здесь она является естественным заполнителем промежутков между волокнистыми элементами кожи – коллагеном и эластином , участвует в их синтезе.

Также гиалуроновая кислота задействована в процессах заживления ран, влияет на иммунные реакции, блокирует действие на клетки свободных радикалов, оберегая ткани от преждевременного старения.

Одним из важнейших свойств гиалуроновой кислоты является её высочайшая гидрофильность - способность связывать влагу. Одна её молекула способна удерживать до 500 молекул воды. Даже 1% водный раствор гиалуроновой кислоты уже не жидкость, а вязкий гель.

К чему приводит дефицит гиалуроновой кислоты?

С возрастом, под влиянием факторов окружающей среды и естественных процессов старения, содержание гиалуроновой кислоты в организме человека уменьшается, к 50-летнему возрасту её количество снижается вдвое. Снижение концентрации г.к. в коже приводит к её обезвоживанию, уменьшению синтеза в ней коллагена и эластина, что проявляется в виде сухости , дряблости , появлении морщин .

Применение в косметологии

В современной косметологии гиалуроновая кислота используется в качестве основного компонента препаратов для увлажнения кожи. Более эффективного вещества для этой цели ещё не найдено.

Поскольку гиалуроновая кислота не является чужеродным веществом для организма, препараты на её основе являются гипоаллергенными.

Гиалуроновая кислота, применяемая в косметологии, может быть как естественного, так и искусственного происхождения. Поскольку её метаболизм очень активен (молекула г.к. «живет» в организме 2-3 дня, затем она разрушается и клетками синтезируется новая) для введения в глубокие слои кожи чаще используется искусственно синтезированные вещества, отличающиеся тем, что в них молекулы г.к. «сшиты» между собой и для их расщепления организму требуется большее время.

В составе средств для наружного применения (кремов, эмульсий, лосьонов и др.) гиалуроновая кислота выступает в роли увлажнителя. Тончайшая пленка на поверхности кожи, образуемая ей, предотвращает чрезмерное испарение воды, задерживает необходимую влагу. При этом она не закупоривает поры кожи, не нарушает чрезкожный газообмен, способствует более глубокому проникновению других активных веществ, входящих в состав средства. Но, нанесенная на поверхность кожи, гиалуроновая кислота не проникает в её глубокие слои, обеспечивает лишь поверхностное, кратковременное увлажнение.

Для глубокого и долговременного увлажнения, для стимуляции фибробластов используется введение гиалуроновой кислоты в глубокие слои кожи - метод биоревитализации .

Препараты с высокой концентрацией гиалуроновой кислоты, имеющие гелеобразную форму, используются в контурной пластике – для коррекции носогубных складок, морщин, увеличения объема губ.

В препаратах для мезотерапии используется свойство гиалуроновой кислоты улучшать проникновение внутрь клеток других веществ, вводимых вместе с ней.

Гиалуроновая кислота используется не только в косметологии, она входит в состав лекарств, широко применяемых во многих областях медицины – офтальмологии, кардиологии, трансплантологии, хирургии и др.

В конце 80-х годов ХХ века врачи заметили, что процесс заживления ран во внутриутробном периоде происходит несколько иначе, чем после рождения. Для лечения врожденных аномалий развития хирургические операции проводили плодам, находящимся внутри тела беременных (на 2-6 месяце беременности). После родов на телах этих детей никаких следов проведенных операций не обнаруживалось. Ученые объясняют это очень большой концентрацией гиалуроновой кислоты в теле плода и амниотической жидкости, его окружающей.

1.История открытия

2.Физико-химические свойства ГК

3.Биологическая роль ГК

4.Синтез и метаболизм ГК в организме человека

5.Получение и модификация ГК

6. Активные биологические функции ГК в организме человека

7.Применение ГК в косметологии и пластической хирургии

8. Инъекционные методики введения гиалуроновой кислоты и их осложнения

1.История открытия

Гиалуроновая кислота (гиалуронат, гиалуронан) (ГК) — несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (стекловидном теле, синовиальной жидкости и др.). Название «гиалуроновая кислота» этому веществу было дано в 1934 году К. Мейером. Химическая структура гиалуроновой кислоты (была установлена в 1950-х годах К. Мейером и Дж. Палмером, которые впервые идентифицировали его из стекловидного тела глаза. .

2.Физико-химические свойства ГК

Гиалуроновая кислота представляет собой полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединенных поочередно β-1,4- и β-1,3-гликозидными связями. Молекула ГК может содержать до 25 00 таких дисахаридных звеньев. Природная ГК имеет молекулярную массу от 5 до 20 000 кДа, также продуцируется некоторыми бактериями (напр. Streptococcus) [Марри Р. и др., 2009], однако не существует в свободном состоянии, только в виде солей Na, Ca и др., поэтому говоря о ГК, всегда подразумевается какая-либо ее соль.

3.Биологическая роль ГК

Даже 1%-ый раствор ГК обладает заметной вязкостью, поскольку ее молекулы образуют в воде нечто наподобие сетки. Недаром гиалуроновую кислоту иногда называют молекулярной губкой [Сеньоре Жан-Марк, 1998]. Благодаря своим физико-химическим свойствам (высокая вязкость, специфическая способность связывать воду и белки и образовывать протеогликановые агрегаты) ГК способствует проявлению многочисленных функций соединительной ткани и являясь одним из основных компонентов внеклеточного матрикса, стекловидного тела глаза и синовиальной жидкости. [Строителев В., Федорищев И., 2000].

Исследования ГК показали, что уникальность этого вещества заключается также и в том, что молекулы ГК с различной длиной полисахаридной цепи оказывают разные эффекты на клеточное поведение:

Короткие цепи ГК (с мол. массой менее 30000) оказывают противоспалительное действие;

Среднемолекулярная ГК (с мол. массой более 500000) подавляет ангиогенез, ингибирует клеточную миграцию и пролиферацию, а также продукцию интерлейкина-1b и простагландина Е2, вследствие чего она нашла широкое применение в офтальмологии и лечении посттравматических и дегенеративных артритов;

Высокомолекулярная фракция ГК с мол. массой 50000-100000 обладает способностью стимулировать клеточную миграцию и пролиферацию в кожных покровах, а также обладает большой водоудерживающей способностью. Одна молекула высокомолекулярной фракции ГК связывает до 500 молекул воды. Поэтому дерма, содержащая значительное количество ГК, оптимально насыщена водой, что обеспечивает коже упругость и устойчивость к внешним воздействиям.

4.Синтез и метаболизм ГК в организме человека

В отличие от других гликозаминогликанов, синтезируемых в аппарате Гольджи, ГК синтезируется на внутренней поверхности плазматической мембраны. По мере удлинения полимерной цепи ГК выводится через мембрану на ее наружную поверхность. Вне клетки ГК может образовывать комплексы с гиалуронат-связывающими белками, называемыми гиалатгеринами.

Все гиаладгерины содержат в своем составе гиалуронат-связывающий мотив или протеогликановый тандемный повтор (PTR) в виде одной (CD44 и TSG-6) или двух (верникан, связующий белок, аггрекан, нейрокан, бревикан) копий. Различные ткани содержат различные наборы гиаладгеринов, что обусловлено особенностями структуры и функциями конкретной соединительной ткани. Так, в хряще обнаружены аггрекан и связующий белок, тогда как в более мягкой соединительной ткани дермы – верзикан.

Синтез гиалуроната осуществляется ферментом гиалуронатсинтазой. У человека имеется три гиалуронатсинтазы HAS1, HAS2 и HAS3. Они кодируются различными генами, которые локализованы на разных хромосомах и произошли от общего предка. Каждый из синтезируемых HAS-белков (гиалуронатсинтаз) может играть специфическую роль в биосинтезе гиалуроната:

HAS1-белок осуществляет медленный синтез высокомолекулярного гиалуроната;

HAS2-белок значительно более активен, чем HAS1 и также синтезирует высокомолекулярный гиалуронат (до 2 х 106 Da);

HAS3-белок наиболее активен из трех HAS-белков, но синтезирует более короткие цепи гиалуроната ((2-3) х 105 Da).

Молекулы гиалуроната разной длины по-разному влияют на поведение клеток. Возможно, это играет важную роль в механизмах физиологической регуляции.

ГК деградируется под воздействием группы тканевых ферментов, называемых гиалуронидазами. Продукты разложения ГК (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства (стимулируют образование новых капилляров из уже существующих сосудов. Кроме того, недавние исследования показали, что фрагменты ГК, в отличие от нативного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках при повреждениях тканей и отторжении трансплантированной кожи. В теле человека весом 70 кг в среднем содержится около 15 грамм ГК, треть из которой преобразуется (расщепляется или синтезируется) каждый день .

5.Получение и модификация ГК

Для практических целей в медицине и косметологии, ГК выделяется из различных биологических тканей – стекловидное тело животных, синовиальная жидкость, пупочные канатики, оболочек различных штаммов микроорганизмов и т.д. Основным и наиболее перспективным источником получения ГК являются гребни птиц.

Не мене важная задачей является очистка экстрактов ГК от чужеродных белковых фракций и нуклеиновых кислот и последующее придание препарату нужных свойств при помощи его модификации, обеспечивающей ее реологические и вязкоупругие свойства, а также увеличения сопротивления деградации под действием ферментов организма и внешних факторов. Подобное изменение свойств ГК расширяет сферы применения в качестве компонента различных препаратов и лекарственных субстанций.

Один из способов модификации обеспечивается фотополимеризацией или фотоперекрестным сшиванием молекул гиалуроновой кислоты под воздействием квантового/лазерного излучения определенных длин волн от 514 до 790 нм.

6. Биологические функции ГК в организме человека

Регенерирующая: Усиление миграции и секретирующей способностифибробластов

Противовоспалительная: Улучшение микроциркуляции крови

Противомикробная: Активация бактерицидных факторов на поверхности кожи и раневых поверхностях

Противотоксическая: Снижение показателей эндогенной интоксикации

Иммуномодулирующая: Усиление фагоцитоза, изменение активности лимфоцитов

Антиоксидантная: Акцептированиеактивных форм кислорода, блокируя свободнорадикальное окисление липидов

Гемостатическая: Активация компонентов гемостаза с образованием тромба

Благодаря своим уникальным свойствам, ГК, в качестве монотерапии или в комбинированной синергии с квантофорезом и другими физиотерапевтическим факторами (электрофорез, ионофорез, магнитотерапия и др.) находит широкое применение в лечебных и реабилитационных программах различных областей медицинской практики и косметологии: ортопедии, травматологии, спортивной медицине, хирургии, гинекологии, неврологии, урологии, дерматологии, эстетической медициныи т.д.

7. Применение ГК в косметологии и пластической хирургии

В коже наличие гиалуроновой кислоты впервые показано К.Мейером в 1948 году. К настоящему времени установлено, что кожа (как эпидермис, так и дерма) относятся к числу тканей с наибольшим содержанием гиалуроната, который во многом определяет не только структуру, но и защитные и регенерационные свойства кожного покрова.

Гиалуроновая кислота — натуральный увлажнитель и каркас кожи.

В дерме ГК образует каркас, к которому присоединяются другие гликозаминогликаны (и прежде всего хондроитинсульфат) и белки, называемые за их свойство избирательно связываться с ГК гиалатгеринами, с образованием полимерной сети, которая заполняет большую часть внеклеточного пространства, обеспечивая механическую поддержку тканей, быструю диффузию водорастворимых молекул и миграцию клеток. С другой стороны, в эпидермисе ГК локализуется в околоклеточном пространстве, создавая оболочку клетки, защищающей ее от действия токсичных веществ.

Следует заметить, что только фракция ГК с молекулярной массой 50000-100000 обладает способностью стимулировать клеточную миграцию и пролиферацию в кожных покровах, а также обладает наиболее возможным уровнем водоудерживающей способности. Одна молекула высокомолекулярной фракции ГК связывает до 500 молекул воды. Поэтому кожные покровы, содержащие значительное количество ГК, максимально насыщены водой, что обеспечивает коже упругость и устойчивость к внешнему воздействию.

Одним из главных признаков старения кожи является снижение содержания ГК и тесно связанное с этим сокращение запаса влаги в коже. Наибольшее количество гиалуроновой кислоты содержится в соединительной ткани новорожденных детей. До 30-35 лет количество ГК в дерме остается достаточно стабильным, после – начинает довольно быстро снижаться, о чем сигнализируют появляющиеся в это время признаки биологического старения – потеря влажности, ухудшение эластичности и тонуса кожи, появление морщин.

Кроме того, с возрастом снижается собственный синтез гиалуроновой кислоты в дерме и эпидермисе и ускоряется ее разрушение под действием различных внешних и внутренних факторов [Сеньоре Жан-Марк, 1998].

Благодаря своим уникальным свойствам, ГК находит широкое применение в различных областях медицинской практики и косметологии.

Огромной популярностью в настоящее время пользуются процедуры, направленные на омоложение кожи лица, рук и других открытых частей тела и устранение видимых признаков старения путем внутрикожного введения ГК, которое называется гиалуроновой биоревитализацией (гиалуропластикой), то есть восстановление количества ГК в коже свойственного молодому возрасту.

8. Инъекционные методики введения гиалуроновой кислоты и их осложнения.

Традиционной формами подобного восполнения является способ инъекционного введения гиалуроновой кислоты в кожу, имеющей ряд недостатков и осложнений, которые зависят от многих внешних и внутренних факторов, в том числе связанных с ошибками персонала, индивидуальными особенностями и повышенной чувствительностью кожи к аллергенной природе препарата попадающего в кровь, а также наличием сопутствующих заболеваний и противопоказаний.

К наиболее распространенным осложнениям инъекционного введения ГК относятся:

— возникающие опухание, выраженные гранулематозные реакции, различной степени отеки и эритема в местах инъекции вследствие реакций локальной гиперчувствительности по типу ангионевротического отека, которые могут сохраняться в течение длительного времени и иметь отрицательные эстетические последствия;

— после инъекционного введения ГК довольно часто возникает рецидив герпетических высыпаний, в результате стимуляции латентного вируса герпеса, особенно в области губ;

— использование инфицированного или плохо очищенного препарата провоцируют развитие инфекционных процессов кожи или реакции на чужеродные тела;

— изменения пигментации кожи в области инъекции;

— кожные воспалительные заболевания в зонах, подлежащих обработке, делают невозможной инъекционную биоревитализацию – последствия могут быть весьма негативными и провоцировать диффузию воспалительного процесса;

— наличие ряда сопутствующих заболеваний;

— инъекционная биоревитализация при беременности и при кормлении грудью также недопустима;

— осложнения после инъекционной биоревитализации неизбежны, если есть аллергия на компоненты препарата или аутоиммунные заболевания;

— прием антикоагулянтов (препаратов разжижающих кровь, например ацетилсалициловой кислоты в аспирине) также могут стать причиной негативных последствий инъекционной биоревитализации;

— при повышенной склонности к образованию келоидных рубцов не рекомендуется инъекционная биоревитализация, так как последствия могут быть непредсказуемыми;

— манипулируя иглой, косметолог не в состоянии полностью контролировать подкожную область введения препарата и избежать введение препарата в кровеносный сосуд, особенно в зоне глаз. С другой стороны, слишком поверхностное введение препарата способно вызвать появление неровностей поверхности кожи, в то же время, чрезмерно глубокое может оказаться нерезультативным;

— болезненность процедуры;

— экономический фактор и относительная дороговизна процедуры.

Всех этих негативных проявлений методики инъекционного введения гиалуроновой кислоты удается избежать при применении альтернативной технологии лазерофореза (квантофореза) КВАНТОЛА.

Данная методика по своей эффективности в косметологии не уступает и даже превосходит существующий до сих пор и наиболее распространенный способ инъекционного введения гиалуроновой кислоты в кожу, имеющей ряд недостатков и осложнений, зависящих от многих факторов, в том числе связанных с ошибками персонала, местными факторами кожи, гиперчувствительностью кожи, наличием хронических заболеваний.

При этом способе биоревитализации достигается гораздо более объемное и равномерное распределение гиалуроновой кислоты в коже по сравнению с инъекционными методиками.

По сути, технология КВАНТОЛА представляет собой сочетанную методику фотодинамического омоложения (биоревитализации) кожи и привлекает внимание специалистов благодаря безопасности, эффективности, безболезненности, отсутствию нежелательных побочных эффектов и доступности для широкого применения.

В более широком аспекте, помимо целей омоложения кожи, этот метод может с успехом использоваться для лечения ряда кожных заболеваний, например фотоповреждений кожи, гиперплазии сальных желез, угрей и множества других состояний, с которыми сталкиваются дерматологи и косметологи и др. (узнайте подробнее…)

Гиалуроновая кислота [ГК] найдена во внеклеточном матриксе позвоночных тканей, в поверхностном покрытии определенных видов Streptococcus и болезнетворных бактериальных микроорганизмов Pasteurella, а также на поверхности некоторых частично пораженных вирусом морских водорослей. Синтазы гиалуроновой кислоты [ГКС], это ферменты, которые полимеризуют ГК, используя UDP-сахарные предшественники, которые найдены во внешних мембранах этих организмов. Были идентифицированы гены ГКС из всех вышеупомянутых источников. Кажется, существуют два отличных класса ГКС, что основано на различиях в аминокислотной последовательности, предсказанной топологии в мембране и предполагаемом механизме реакции.

Все ГКС были определены как синтазы класса I, за исключением ГКС у вида Pasteurella. Был также объяснен каталитический способ работы единственной ГКС класса II (пмГКС). Этот фермент удлиняет внешние ГК-присоединяемые олигосахаридные акцепторы путем добавления индивидуальных моносахаридных единиц к неуменьшающемуся концу, чтобы сформировать длинные полимеры in vitro; ни одна ГКС класса I не имеет такой способности. Способ и направление полимеризации ГК, катализируемой ГКС класса I, остаются неясными. Фермент пмГКС также был проанализирован на предмет двух имеющихся у него активностей: GlcUA-трансферазной и GlcNAc-трансферазной. Таким образом, два активных участка существуют в одном пмГКС полипептиде, опровергая широко принятую догму гликобиологи: "один фермент - один модифицированный сахар". Предварительные свидетельства позволяют предполагать, что у ферментов класса I может также быть два участка активности.

Каталитический потенциал фермента пмГКС может использоваться, чтобы создать новые полисахариды или проектировать олигосахариды. Из-за множества потенциальных ГК-базирующихся медицинских методов лечения, эта хемоэнзиматическая технология обещает принести пользу на пути нашего стремления к хорошему здоровью.

Ключевые слова

Гиалуроновая кислота (ГК), хондроитин, гликозилтрансфераза, синтаза, катализ, механизм, химерные полисахариды, монодисперсные олигосахариды

Введение

Гиалуронан [ГК] - очень богатый глюкозаминогликан в организме позвоночных, имеющий и структурную, и сигнальную роли. Определенные патогенные бактерии, а именно, группы А и С вида Streptococcus и тип А Pasteurella multocida, производят внеклеточный покрывающий ГК, называемый капсулой. У обоих видов ГК капсула и является фактором ядовитости, который обеспечивает бактериям сопротивляемость фагоцитам и комплементарность. Другой организм, производящий ГК - это морская водоросля хлорелла, инфицированная определенным большим двухцепочечным ДНКовым вирусом PBCV-1. Роль ГК в жизненном цикле этого вируса пока не ясна на данный момент.

Иллюстрация 1. Реакция биосинтеза ГК.

Ферменты класса гликозилтрансфераз, которые полимеризируют ГК, называются ГК-синтазами (или ГКС), по старой терминологии, включающей также ГК-синтетазы. Все известные ГК-синтазы - это разновидности одного полипептида, ответственные за полимеризацию цепи ГК. UDP-сахарные предшественники, UDP-GlcNAc и UDP-GlcUA используются ГК-синтазами в присутствии двухвалентного катиона (Mn и/или Mg) при нейтральном pH (рис. 1). Все синтазы являются мембранносвязанными белками в живой клетке и обнаружены в мембранной фракции после лизиса клеток.

Между 1993 - 1998 были идентифицированы и клонированы на молекулярном уровне ГК-синтазы групп A и С Streptococcus [спГКС и сеГКС соответственно], ГК-синтазы позвоночных животных [ГКС 1,2,3], ГК-синтаза водорослевого вируса [свГКС], а также ГК-синтаза типа A вида Pasteurella multocida [пмГКС]. Первые три типа ГК-синтаз, кажется, очень похожи в размере, аминокислотной последовательности и предсказанной топологии в мембране. ГК-синтаза вида Pasteurella, напротив, больше и обладает существенно отличающейся от других синтаз последовательностью и предсказанной топологией. Поэтому, мы предположили существование двух классов ГК-синтаз (таблица 1). Ферменты класса I включают стрептококковые, позвоночные и вирусные белки, в то время как белок вида Pasteurella в настоящее время единственный член класса II. У нас также есть некоторые свидетельства того, что каталитические процессы ферментов класса I и класса II отличаются.

Таблица 1. Два класса ГК-синтаз:

Хотя ГК-синтаза вида Pasteurella был последним обнаруженным ферментом из всех, некоторые особенности пмГКС способствовали существенному продвижению в его изучении в сравнении с некоторыми членами ферментов класса I, которые исследовались четыре десятилетия. Ключевая особенностью пмГКС, которая позволила разъяснить молекулярное направление полимеризации и идентификацию ее двух активных участков - это способность пмГКС удлиннять внешне расположенный акцепторный олигосахарид. Рекомбинантная пмГКС добавляет одиночные моносахариды повторным способом к ГК-ассоциированному олигосахариду in vitro. Внутренняя особенность каждой передачи моносахарида ответственна для того, чтобы формировать альтернативное повторение дисахаридов в этом глюкозаминогликане; одновременное формирование дисахаридной единицы не требуется. С другой стороны, никакое подобное удлиннение внешних акцепторов не было доказано ни для какого фермента класса I. Через фундаментальное научное исследование мы теперь развили некоторые биотехнологические применения замечательного белка класса ГК-синтаз вида Pasteurella.

Материалы & методы

Реагенты

Все реактивы для молекулярнобиологических исследований без специальной пометки были от Promega. Стандартные олигонуклеотиды были от Great American Gene Company. Все другие реактивы высокой чистоты, если иначе не отмечено, были от Sigma или от Fisher.

Усечение пмГКС и точечные мутанты

Был произведен ряд усеченных полипептидов, путем амплификации pPm7А вставки методом полимеразной цепной реакцией с Taq-полимеразой (Fisher) и синтетическими олигонуклеотидными праймерами, соответствующими различным частям пмГКС, с открытой рамкой считывания. Ампликоны затем были клонированы в плазмиду для экспрессии pKK223-3 (tac промотор, Pharmacia). Получившимися рекомбинантными конструкциями были трансформированы клетки Escherichia coli штамма TOP 10F" (Invitrogen) и выращены на среде LB (Luria-Bertani) с ампициллиновой селекцией. Мутации были сделаны, используя метод QuickChange сайт-направленного мутагенеза (Stratagene) с плазмидой pKK/пмГКС как ДНК шаблон.

Приготовление фермента

Для приготовления мембраны, содержащей рекомбинантный пмГКС полной длины, пмГК1-972 был изолирован из E.coli, как описано. Для растворимых усеченных пмГКС белков, пмГКС1-703, пмГКС1-650 и пмГКС1-703 - содержащих мутантов, клетки были извлечены с помощью В-PerТМ II Bacterial Protein Extraction Reagent (Pieree) согласно инструкции производителя, за исключением того, что процедура была выполнена при 7°C в присутствии ингибиторов протеаз.

Ферментные пути полимеризации ГК. GlcNAc модификация или GlcUA модификация

Три варианта было разработано, чтобы обнаружить происходит ли (а) полимеризация длинных цепей ГК или (b) добавление одиночного GlcNAc к GlcUA-конечному акцепторному олигосахариду ГК , или (c) добавление одиночного GlcUA к GlcNAc-конечному акцепторному олигосахариду ГК . Полная активность ГКС была оценена для раствора, содержащего 50 mM Tris, pH 7.2, 20 mM MnCl2, 0.1 M (NH4)2SO4, 1 M этиленгликоля, 0.12 mM UDP-(14C)GlcUA (0.01 μCi; NEN), 0.3 mM UDP-GlcNAc и различный набор ГК олигосахаридов, полученный из тестикул путем обработки гиалуронидазой [(GlcNAc-GlcUA)n, n= 4-10] при 30°C в течение 25 минут в объеме реакционной смеси 50 мкл. GlcNAc-трансферазная активность была оценена в течение 4 минут в той же буферной системе с различным набором ГК олигосахаридов, но только с одним сахаром в роли предшественника - 0.3 mM UDP-(3H)GlcUA (0.2 μCi; NEN). GlcUA-трансферазная активность была оценена в течение 4 минут в той же самой буферной системе, но только с 0.12 mM UDP-(14C)GlcUA (0.02 μCi) и с нечетным набором ГК олигосахаридов (3.5 мкг уроновой кислоты), приготовленных при помощи воздействия ацетата ртути на ГК-лиазу Streptomyces. Реакции были прекращены путем добавления SDS до 2% (w/v). Продукты реакции были отделены от субстратов путем бумажной (Whatman 3M) хроматографии с этанолом/1 М сульфат аммония, pH 5 5, как основной растворитель (65:35 для ГКС и оценки GlcUA-Tase; 75:25 для оценки GlcNAc-Tase). Для оценки ГКС образец бумажной полосы был промыт водой, и объединение радиоактивных сахаров в полимер ГК было обнаружено по сцинтилляции жидкости, рассчитанной при помощи BioSafe II коктейля (RPI). Для реакций полуиспытания образец и расположенные вниз по течению 6 см полосы были посчитаны по частям в 2 см. Все оценочные эксперименты были просчитаны таким образом, чтобы быть линейными относительно времени инкубации и концентрации белка.

Гель-фильтрационная хроматография

Размер ГК полимеров был проанализирован хроматографически на колонках Phenomenex PolySep-GFC-P 3000, элюция производилась 0.2 M нитратом натрия. Колонка была стандартизована флуоресцентными декстранами различного размера. Радиоактивные компоненты были обнаружены с помощью датчика LB508 Radioflow (EG & G Berthold) и коктейля Zinsser. По сравнению с полной оценкой ГКС, используя бумажную хроматографию, описанную выше, эти 3-минутные реакции содержали дважды UDP-сахарные концентрации, 0.06 μCi UDP-(14C)GlcUA и 0.25 нанограмма ряда ГК олигосахаридов. Кроме того, использовалось добавление кипящего (2 минуты) этилендиамина тетрациловой кислоты (финальная концентрация 22 mM), чтобы закончить реакции вместо добавления SDS.

Результаты и обсуждение

Утилизация и специфичность акцептора ГКС

Некоторые олигосахариды были проверены, в качестве акцепторов для рекомбинантного пмГКС1-972(Таблица 2). ГК олигосахариды были получены из тестикул путем гиалуронидазного щепления, а удлиннены пмГКС с помощью доставляемых подходящих UDP-сахаров. Восстановление борогидратом натрия не нарушает активность акцептора. С другой стороны, олигосахариды, полученные из ГК при помощи отщепления лиазой, не поддерживают удлиннение; дегидратированные ненасыщенные невосстановленные концевые остатки GlcUA нуждаются в гидроксильных группах, которые смогли бы присоединить входящий сахар из UDP-предшественника. Поэтому пмГКС-катализируемое удлиннение происходит в случае невосстановленных концевых групп. В ряде параллельных экспериментов было обнаружены рекомбинантные формы синтаз класса I - спГКС и х1ГКС, которые не удлинняют ГК-получаемые акцепторы. Принимая во внимание направление активности ферментов класса I, противоречивые сообщения были сделаны и необходимы дальнейшие исследования.

Таблица 2. Специфика олигосахаридных акцепторо пмГКС:

Интересно, что хондроитин сульфат пентамер является хорошим акцептором для пмГКС. Другие структурно связанные олигосахариды такие, как хитотетроза или хепарозан пентамер, однако, не служат акцепторами для пмГКС. В целом, пмГКС, кажется, требует, β-связанных GlcUA-содержащих акцепторных олигосахаридов. Мы выдвигаем гипотезу, что участок связывания олигосахаридов промежуточен в цепи удерживания ГК во время полимеризации.

Молекулярный анализ активности пмГКС трансферазы: два активных участка в одном полипептиде

Возможность измерить два компонента гликозилтрансферазной активности ГК синтазы, GlcNAc-трансфераза и GlcUA-трансфераза, позволил молекулярный анализ пмГКС. Мы отметили, что короткий дублированный мотив последовательности: Asp-Gly-Ser (Аспарагиновая к-та-Глицин-Серин), присутствовал в пмГКС. Из анализа сравнения гидрофобных групп многих других гликозилтрансфераз, которые производят β-связанные полисахариды или олигосахариды предположили, что вообще, существует два типа доменов: области "A" и "Б". ПмГКС, синтаза класса II, тем и уникальна, что содержит два "А" домена (личная коммуникация, B.Henrissat). Было предложено, что определенные члены класса I ГК синтаз (спГКС) содержат одиночные "А" и одиночные "Б" области. Различное удаление или точечные мутанты пмГКС были оценены для их способности полимеризовать ГК цепи или их способность добавлять одиночный сахар к ГК акцепторному олигосахариду (Таблица 3). Суммируя сказанное, пмГКС содержит два отличных друг от друга активных участка. Мутагенез аспартата мотива DGS (остаток 196 или 477) по обоим сайтам приводи к потере ГК полимеризации, но активность другого сайта оставалась относительно незатронутой. Таким образом, двойная активность ГК синтазы была преобразована в два различных одиночных действия гликозилтрансферазы.

Таблица 3. Активность пмГКС с удаленным участком или точечной мутацией.

Удаление последних 269 остатков от конечной карбоксильной группы преобразовало слабо выраженный мембранный белок в хорошо выраженный растворимый. Рассмотрение аминокислотной последовательности белка пмГКС в этой области, однако, не показывает типичных особенностей вторичной структуры, которые обеспечили бы прямое взаимодействие фермента с двойным слоем липида. Мы выдвигаем гипотезу, что конечная карбоксильная группа каталитического фермента пмГКС стыкуется с направляющим мембраносвязанным полисахарида транспортного аппарата живущей бактериальной клетки.

Первая "A" область пмГКС, А1, является GlcNAc-тазой, в то время как вторая "A" область, A2, является GlcUA-тазой (рис. 2). Это - первая идентификация двух активных участков для фермента, который производит гетерополисахарид, так же как ясное доказательство, что один фермент может действительно передать два различных сахара. Отличный от типа F фермент вида P. multocida, названный пмЦС, был найден, и вяснено, что он катализирует формирование несульфатируемого полимера хондроитина. ГК и хондроитин идентичны в структуре, за исключением упомянутого выше полимера, который содержит N-ацетилглюкозамин вместо GlcNAc. И пмГКС, и пмЦС на 87 % идентичны на уровне аминокислот. Большинство изменений в остатках находятся в области А1, что вполне совместимо с гипотезой о том, что эта область ответственна за передачу гексозамина.

Иллюстрация 2. Схематическое изображение пмГКС областей.
Два независимых трансферазных домена, А1 и A2, ответственны за катализ полимеризации цепи ГК. Повторяющиеся последовательные добавления одиночных сахаров быстро строят цепь ГК. Похоже, что карбоксильный конец пмГКС некоторым способом взаимодействует с мембранносвязанным транспортным аппаратом бактериальной клетки.

Иллюстрация 3. Модель биосинтеза ГК при помощи пмГКС.
Одиночные сахара добавляются к каждому "A" домену повторным способом к невосстанавливающемуся концу цепи ГК. Внутренняя точность каждой стадии активности трансферазы поддерживает повторение структуры дисахаридов ГК. Возникающая цепь ГК вероятно сохраняется пмГКС во время катализа через олигосахарид-связывающий участок.

Мы продемонстрировали эффективную передачу одиночного сахара с помощью пмГКС in vitro несколькими типами экспериментов, поэтому, мы выдвинули гипотезу, что цепи ГК формируются быстрым, повторяющимся добавлением одиночного сахара синтазой класса II (рис. 3). К настоящему времени, одна линия свидетельства предполагает, что фермент класса I также обладает двумя участками трансферазы. Мутация лейцинового остатка 314 на валин в ммГКС1, в части предварительного участка GlcUA-тазы, как сообщали, преобразовала эту ГКС позвоночного животного в хито-олигосахаридную синтазу. Ни один участок с соответствующей активностью GlcNAc-трансферазы не был идентифицирован.

Прививание полимера полисахаридными синтазами: добавление ГК к молекулам или твердым частицам

Исследование пмГКС в научно-исследовательской лаборатории преобразовало представления о ГК синтазах от царства трудных, упорных животноподобных чудовищ до потенциальных биотехнологических рабочих лошадок. Новые молекулы могут быть сформированы, используя способность пмГКС привить длинные цепи ГК на коротких ГК полученных цепях или хондроитин-производных акцепторах. Например, полезные акцепторы могут состоять из маленьких молекул или лекарств с ковалентно связанной ГК или хондроитин-олигосахаридные цепи (длиной в 4 сахара, например). В другом случае, цепи ГК могут быть добавлены к олигосахаридному праймеру, иммобилизованному на твердой поверхности (таблица 4). Таким образом, длинные цепи ГК могут быть мягко добавлены к чувствительным веществам или тонким устройствам.

В другом приложении, новые химерные полисахариды могут быть сформированы потому, что использование пмГКС олигосахаридным акцептором не столь же строго, как сахаридная трансферазная специфика. Хондроитин и хондроитин-сульфат признаны как акцепторы пмГКС и удлинняются ГК цепью различных длин (рис. 4). Наоборот, пмЦС очень гомлогичная хондроитин синтазе, распознает и удлинняет ГК акцепторы цепями хондроитина. Химерные молекулы глюкозаминогликана сформированы, содержа естественные, определенного соединения связи. Эти привитые полисахариды могут служить, чтобы присоединиться к клетке или ткани, которая связывает ГК с другой клеткой или ткань, связывающей хондроитин или хондроитин-сульфат. В определенных аспектах, привитые глюкозаминогликаны напоминают протеогликаны, которые являются существенными компонентами матрикса в тканях позвоночных. Но так как никакие компоновщики белка не присутствуют в химерных полимерах, то антигенность и проблемы протеолизиса, возникающие вокруг медицинского использования протеогликанов, устранены. Риск передачи инфекционных агентов тканями, извлеченными из животных, человеческому пациенту также уменьшен при использовании химерных полимеров.

Таблица 4. ПмГКС-инициированное прививание ГК на бусинки полиакриламида. Реакционная смесь содержит пмГКС, несущий радиоактивную метку UDP-(14C)GlcUA и UDP-(3H)GlcNAc, а также различные иммобилизованные праймеры сахаров (акцепторы, соединенные восстановительным аминированием в аминобусины) были представлены. Бусинки были промыты и радиоактивно инкорпорированы на другие бусины, измеренные методом расчета жидкостной сцинтилляции. ГК цепи были привиты на пластиковые бусины при использовании подходящего праймера и пмГКС.

Иллюстрация 4. Схематическое изображение привитых полисахаридных структур. ГК синтаза вида Pasteurella или хондроитин синтаза будут удлиннять определенные другие полимеры на невосстанавливающемся конце in vitro, чтобы сформировать новые химерные глюкозаминогликаны. Изображены некоторые примеры.

Синтез монодисперсной ГК и ГК-связанных олигосахаридов

В дополнение к добавлению большой полимерной ГК цепи к молекулам акцептора, пмГКС синтезируют определенные меньшие ГК олигосахариды в диапазоне от 5 до 24 сахаров. Используя фермент дикого типа и различные условия реакции, был относительно легко получен ГК олигосахарид, содержащий 4 или 5 моноахаридов, удлиненных несколькими сахарами до более длинных версий, которые очень часто трудно получить в больших количествах. Мы выяснили, что, комбинируя растворимый мутант GlcUA-Tase и растворимый мутант GlcNAc-Tase в той же самой смеси реакции позволяет формирование ГК полимера, если система снабжена акцептором. В течение 3-х минут была сделана цепь из примерно 150 сахаров (-30 кДа). Любая одиночная мутант-синтаза не сформирует в результате цепь ГК. Поэтому, если дальнейший контроль реакции сделан путем выборочного комбинирования различных ферментов, UDP-сахаров и акцепторов, то могут быть получены определенные монодисперсные олигосахариды (рис. 5).

Иллюстрация 5. Приготовление определенных олигосахаридов.
В этом примере, акцептор ГК тетрасахарид удлинняется одиночной хондроитин дисахаридной единицей, используя два шага с иммобилизованным мутантом синтазы вида Pasteurella (показано белыми стрелками). Изображенный продукт является новым гексасахаридом. Повторение цикла еще раз производит олигосахарид, два цикла формируют декасахарид, и т.д. Если акцептор был ранее соединен с другой молекулой (например препарат или лекарство), тогда новый конъюгат был бы удлиннен коротким ГК, хондроитином или гибридной цепью как и желательно.

Например, в одном воплощении, смесь UDP-GlcNAc, UDP-GlcUA и акцептора постоянно циркулирует через отдельные биореакторы с иммобилизованными мутант-синтазами, которые передают только одиночный сахар. С каждым циклом инкубации биореактора другая сахарная группа добавляется к акцептору, чтобы сформировать маленькие определенные ГК олигосахариды. Использование похожего пмЦС мутанта (например GalNAc-Tase) в одном из шагов позволило происходить формированию смешанных олигосахаридов при использовании UDP-GlcNAc. Биологическая активность и терапевтический потенциал маленьких ГК олигосахаридов - сложная область для исследования, которая потребует определенных, монодисперсных сахаров для однозначной интерпретации.

Заключение

Очевидно, существуют два различных класса ГК синтаз. Наиболее хорошо охарактеризован фермент класса II вида Рasteurella, удлинняющий цепь ГК повторяющимся присоединением одиночного сахара на невосстанавливающийся конец цепи ГК. Направление и способ работы синтаз класса I (стрептококковые, вирусные и ферменты позвоночных) остаются неясными. Относительно прикладных наук, способность пмГКС удлиннять экзогенно расположенные акцепторные молекулы полезна для создания новых молекул и/или устройств с потенциальным медицинским применением.

1

Дан краткий исторический очерк об открытии и комплексном изучении гиалуроновых кислот. В сравнительном плане проведена систематизация данных научной литературы по особенностям химического строения, физико-химических свойств, гистологической и цитологической принадлежности, функций и метаболизма гиалуроновых кислот у организмов различных таксономических групп. Выявлены особенности ферментного состава, обеспечивающие синтез и деградацию биополимера у микроорганизмов и в клетках тканей млекопитающих. Проанализированы традиционные технологии извлечения из животного сырья и способы его получения на основе культур Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus и Bacillus subtilis. Обоснована научно-техническая разработка инновационных биотехнологий гиалуроновых кислот различной молекулярной массы и перспективы их производственной реализации. Представлены сведения о применении продукции на их основе в различных сферах современной жизни.

гиалуроновая кислота

технологии микробного синтеза

биотехнология

бактерии

1. Белодед А. В. Микробиологический синтез и деградация гиалуроновой кислоты бактериями р. Streptococcus: Автореф. дис. канд. биол. наук: МГУПБ - М., 2008. - 23 с.

2. Бычков С.М., Колесников М.Ф. Способ получения гиалуроновой кислоты //A. с № 219752 СССР, 1968. - Бюл. № 19. - С. 90.

3. Забненкова О.В. Внутридермальные филлеры на основе гиалуроновой кислоты. Показания к применению, возможные комбинации // Пластическая хирургия и косметология: научно-практический журнал, 2010. - № 1 - С. 101-115. URL: http://www.pscj.ru/upload/iblock/569/11.pdf (дата обращения: 24.11.2016)

4. Костина Г., Радаева И. Использование гиалуроновой кислоты в медицине и косметологии // Косметика и медицина, 1999. - № 2-3. - С. 53-57.

5. Лупына Т. П., Волошина Е. С. Микробиологический способ получения гиалуроновой кислоты и перспективы её использования в фармацевтике. Национальный университет пищевых технологий, Украина. - 2014. - С. 4.

6. Препараты Princess filler и Princess volume в коррекции возрастных изменений лица и атрофических рубцов // Инъекционные методы в косметологии, 2013. - №2 /http://corneal.ru/events/publications/43/ (дата обращения:24.11.2016)

7. Португалова B.B., Ерзикян К.Л. Гиалуроновая кислота и ее роль в жизнедеятельности организмов // Успехи соврем. биол., 1986. - Т. 101, № 3. - С. 344-358.

8. Радаева И.Ф., Костина Г.А., Змиевский A.B. Гиалуроновая кислота: биологическая роль, строение, синтез, выделение, очистка и применение // Прикл. биохим. микробиол., 1997. - Т. 33, №2. - С. 133-137.

9. Ряшенцев В.Ю., Никольский С.Ф., Вайнермен Е.С. и др. Способ получения гиалуроновой кислоты // Патент № 2017751 РФ, 1994. - Бюл. № 15. - С. 75-76.

10. Толстых П.И., Стекольников Л.И., Рыльцев В.В. и др. Лекарственные препараты животного происхождения для наружного применения // Хим.-фарм. журн., 1991. - Т. 25, № 4. - С. 83-87

11. Филлеры: что это такое [Электронный ресурс] // Стоматология & косметология http://24stoma.ru/filleri.html (дата обращения: 24.11.2016 г.)

12. Abatangelo G., Martinelli M., Vecchia P. Healing of hyaluronic acid-enriched wounds:histological observations // J. Surg. Res., 1983. - V. 35, № 5. - P. 410-416.

13. Ahmet Tezel & Clenn H. Fredrickon Дермальные филлеры на основе гиалуроновой кислоты: взгляд с позиции науки [Калифорнийский университет, Санта-Барбара, США] [Электронный ресурс] // SKIN AESTHETIC http://estetika.uz/upload/files/da25b536d87b2edf853c5bc5d10f2968.pdf (дата обращения: 24.11.2016)

14. Carter G.R. Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. // Adv. Vet. Sci., 1967. - V. 11. - P. 321-379.

15. DeAngelis P.L., Jing W., Graves M.V., Burbank D.E., van Etten J.L. Hyaluronan synthase оf chlorella virus PBCV-1 // Science, 1997. - V. 278. - P. 1800-1803.

16. DeAngelis P.L., Papaconstantinou J., Weigel P.H. Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria // J. Biol. Chem, 1993. - V. 268. - P. 14568-14571.

17. Frost G.I., Csoka Т., Stern R. The hyaluronidases: a chemical, biological and clinical overview // Trends Glycosci. Glycotech., 1996. - V. 8. - P. 419-434.

18. Graves M.V., Burbank D.E., Roth R., Heuser J., DeAngelis P.L., van Etten J.L. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae // Virology, 1999. - V. 257. - P.15-23.

19. Karlstam В., Vincent J., Johansson В., Bryno C. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes // Prep. Biochem., 1991. - V. 21. - P. 237-256.

20. Kendall F.E., Heidelberger M., Dawson M.H. A serologically inactive polysaccharide elaborated by mucoid strains of group A hemolytic Streptococcus. // J. Biol. Chem., 1937. - V. 118. - P. 61-69.

21. Kim J.H., Yoo S.J., Oh D.K., Kweon Y.G. et al. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. // Enzyme Microb. Technol., 1996. - V. 19. - P. 440-445.

22. Lansing M., Lellig S., Mausolf A., Martini I., Crescenzi F., Oregon M., Prehm P. Hyaluronate synthase: cloning and sequencing of the gene from Streptococcus sp. // Biochem. J., 1993. -V. 289. - P. 179-184.

23. Linker A., Meyer K. Production of Unsaturated Uronides by Bacterial Hyaluronidases //Nature, 1954. - V. 174. - P. 1192-1194.

24. Matsubara C, Kajiwara M., Akasaka H., Haze S. Carbon-13 nuclear magnetic resonance studies on the biosynthesis of hyaluronic acid // Chem. Pharm. Bull., 1991. - V. 39. - P. 2446-2448.

25. Meyer K. Highly viscous sodium hyaluronate // J. Biol. Chem., 1948. - V. 176. - № 2. - P. 993-997.

26. Meyer K. Hyaluronidases // The Enzymes. - V. 5. / ed. Boyer P.D. - New York: Academic Press, 1971. - P . 307-320.

27. Meyer K., Palmer J. The polysaccharide of the vitreous humor // J. Biol. Chem., 1934. -V. 107. - P. 629-634.

28. Mortimer E.A., Vastine E.L. Production of Capsular Polysaccharide (Hyaluronic Acid)by L Colonies of Group A Streptococci. // J. Bacteriol., 1967. - V. 94, № 1. - P. 268-271.

29. Prehm P. Hyaluronan. // Biopolymers: biology, chemistry, biotechnology, applications. -V. 5: Polysaccharides I. Polysaccharides from prokaryotes. / eds. Vandamme E.J., DeBaets S.,Steinbuchel A. - Weinheim: Wiley-VCH, 2000. - P. 379-404.

30. Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells: characterization of the synthase. // Biochem. J., 1983. - V. 211. - P. 181-189.

31. Roseman S., Moses F.E., Ludowieg J., Dorfman A. The biosynthesis of hyaluronic acidby group A Streptococcus. Utilization of l-C14-glucose // J. Biol. Chem., 1953. - V. 203. - P.213-225.

32. Scott J.E., Cummings C, Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer // Biochem. J., 1991. - V.274. - P. 699-705.

33. Shimada Е., Matsumura G.J. Molecular Weight of Hyaluronic Acid from Rabbit Skin //J. Biochem., 1977. - V. 81. - № l. - P. 79-91.

34. Stern R., Asari A.A., Sugahara K.N. Hyaluronan fragments: an information-rich system // Eur. J. Cell Biol., 2006. - V. 85. - P. 699-715.

35. Sugahara K., Schwartz N.B., Dorfman A. Biosynthesis of Hyaluronic Acid by Streptococcus // J. Biol. Chem., 1979. - V. 254, № 14. - P. 6252-6261.

36. Weigel P.H., Hascall V.C., Tammi M. Hyaluronan Synthases // J. Biol. Chem., 1997. - V. 272, № 22. - P. 13997-14000.

37. Widner В., Behr R., Von Dollen S., Tang M., Ней Т., Sloma A., Sternberg D., DeAngelis P.L., Weigel P.H., Brown S. Hyaluronic Acid Production in Bacillus subtilis // Appl. Environ. Microbiol., 2005. - V. 71, № 7. - P. 3747-3752.

A DESCRIPTION OF DIFFERENT METHODS USED TO OBTAIN HYALURONIC ACID

Savoskin O. V. 1 Semyonova E. F. 1 Rashevskaya E. Yu. 1 Polyakova A. A. 1 Grybkova E. A. 1 Agabalaeva K. O. 1 Moiseeva I. Ya. 1

1 Penza State University

Abstract:

The article gives a brief historical outline of the discovery and comprehensive study of hyaluronic acids. We compare and systematize scientific papers focusing on the specific features of functions, metabolism, chemical constitution, physical, chemical, histological and cytological properties of hyaluronic acids in organisms belonging to different taxonomic groups. We also reveal the specific features of enzyme composition that ensure the synthesis and degradation of biopolymers in microorganisms and mammals’ tissue cells. In addition, we analyze traditional extraction technologies used with animal-based raw materials and ways of obtaining them from Streptococcus equi subsp. equi, S. equi subsp. zooepidеmiсus and Bacillus subtilis. Furthermore, we present the grounds for the scientific and technical development of innovative biotechnologies related to hyaluronic acids with different molecular weight and their production prospects. Finally, we give information about how hyaluronic acid-based goods are used in different spheres of modern life.

Keywords:

technologies of microbial synthesis

В последние годы медицина, фармацевтика и косметология далеко шагнули в вопросе использования высокомолекулярных соединений (ВМС), в качестве основных действующих, а также вспомогательных, корригирующих веществ и наполнителей. Одним из наиболее востребованных в медицине и косметологии ВМС на сегодняшний момент, является гиалуроновая кислота (ГК), которая нашла свое применения в хирургии, как заменитель синовиальной жидкости в суставах в качестве смазывающего и хондропротекторного компонента; дерматологии, в качестве ремоделирующего агента при коррекции возрастных деформаций кожи лица, особенно кожи вокруг глаз; гинекологии, в качестве противоспаечного средства при внутривлагалищных сращениях. Таким образом, спектр применения гиалуроновой кислоты весьма широк; он постоянно пополняется, что приводит к повышению спроса на данный вид биополимера, а, следовательно, интересу к альтернативным источникам его получения.

1. История открытия гиалуроновой кислоты

В 1934 г. в журнале Journal of Biological Chemistry была опубликована статья Карла Маера и Джона Палмера, в которой упоминался необычный полисахарид, выделенный из стекловидного тела бычьего глаза (от греч. hyalos — стекловидный и англ. uronic acid - уроновая кислота), достаточно высокой молекулярной массы 450 г/моль и не содержащий сульфатных групп . Дальнейшие исследования показали, что полисахарид представлен фрагментами дисахарида, который состоит из D-глюкуроновой кислоты и N-ацетилировананного глюкозоамина.

Данные о принадлежности биополимера только структурам организмов млекопитающих опровергли, когда в 1937 г. Кендал и Хейдельбергер заявили о выделении полисахарида идентичного гиалуронану из культуральной жидкости гемолитического стрептококка. Идентичность выделенного биополимера подтвердилась ими же позже после установления структуры полисахарида в 60-е годы . В 1954 г. в журнале Nature руководитель лаборатории Meyer опубликовал структурную формулу фрагмента дисахарида, продукта расщепления стрептококковой гиалуронатлиазой .

Научный интерес к гиалуроновой кислоте, ее получению, выделению и применению все больше увеличивался. К настоящему времени опубликовано более 15000 статей в зарубежных и отечественных журналах. Результатом исследований было получение достоверных данных о выделении гиалуронана из различных органов млекопитающих, а также из культур различных клеток (гемолитический стрептококк, стрептомицеты, коринебактерии). Некоторые данные имели промышленное значение, например, экстракция гиалуроновой кислоты из гребней кур используется и сейчас. За полвека увеличился и спектр применения гиалуронана (хирургия, косметология, травматология и ортопедия, дерматология и др.), а также были созданы новейшие лекарственные формы на основе его полимерной структуры . Все это не было возможно без установления биологической роли биополимера, который, как оказалось, служил компонентом клеточного матрикса, необходимого для нормального осуществления метаболических процессов пролиферации и дифференциации тканей. Так был изучен процесс метаболизма гиалуронана в организме человека. Стало известно, что в день распадается и синтезируется около 5 г гиалуроновой кислоты, а ее содержание в теле человека составляет примерно 0,007%, что составляет около 15 г у женщины массой 70 кг .

В 1953 г. Роземан, Мозес и Дорфман опубликовали работы, где был указан способ получения гиалуронана, его осаждения и выделения в свободном виде на основе культур гемолитического стрептококка. В дальнейшем их методы выделения и осаждения были усовершенствованы Цифонелли и Маедо, что позволило повысить выход и чистоту продукта . Механизм образования гиалуронана в бактериях, в том числе стрептококков, был выявлен позже, когда был исследован ферментный состав микроорганизмов, способных к синтезу гиалуроновой кислоты. В 1959 г. было доказано существование специфических пептидов гиалуронатсинтетаз, которые осуществляют синтез полисахарида в мембранах бактерий .

В 1992 г. американские ученые заявили о клонировании гена, отвечающего за синтез гиалуронатсинтетазы, и передаче его штамму кишечной палочки. Однако активного фермента получить не смогли. ДеАнгелис в 2002 г. сообщил об успешном выделении оперона гиалуронатсинтетазы и экспрессии его в микроорганизм. Это был первый случай клонирования глюкозоаминогликансинтетаз в мировой практике .

В настоящее время в мире проводятся исследования механизмов действия гиалуроновых кислот, их роли в организме человека и альтернативных путей использования. Однако, особенно актуальными являются вопросы микробного синтеза гиалуронана, что подтверждает цена за килограмм очищенного продукта, составляющая около 700000 т. руб. (импортируемый продукт на основе животного сырья). Так, за последние 20 лет в мире было выдано более 50 патентов, что свидетельствует о высоком интересе к рассматриваемой проблеме.

2. Химическое строение и физические свойства гиалуроновой кислоты

Около 20 лет с момента первой публикации об открытии животного полисахарида гиалуроновой кислоты (1934 г.) понадобилось лаборатории Meyer, для установления точного химического строения гиалуроновой кислоты. Гиалуроновая кислота, гиалуронат или гиалуронан - (C14H21NO11)n - органическое соединение, относящееся к группе несульфатированных глюкозоаминогликанов (рис. 1). Наличие многочисленных сульфатированных групп у родственных глюкозоаминогликанов является причиной многочисленной изомерии, чего не наблюдается у гиалуроновой кислоты, которая всегда химически идентична, в независимости от методов и источников получения. Молекула гиалуроновой кислоты построена из повторяющихся фрагментов D-глюкуроновой кислоты и N-ацетил-D-глюкозоамина, соединенных β-(1-3)гликозидной связью. Основы фрагментов сахаров - это глюкопиранозное кольцо с различными заместителями (ацетамидная группа, гидроксильные и карбоксильные функциональные группы).

Рис. 1. Химическая формула гиалуроновой кислоты

Для молекулы гиалуроновой кислоты характерно образование большого количества водородных связей как внутри молекулы, так и между соседними углеводными остатками, находящимися на значительном друг от друга расстоянии, а в водном растворе даже между соседними молекулами через карбоксил и ацетамидную группу. Имеет кислую реакцию среды ввиду наличия непротонированной карбоксильной группы. Кислотные свойства гиалуроната позволяют получать растворимые в воде соли с щелочными металлами. Гиалуроновая кислота - это анионный линейный полисахарид с различной молекулярной массой 105-107Да. Молекулярная масса зависит от способа получения, причем, ввиду отсутствия изомерии, получаемый гиалуронат всегда химически идентичен стандартному.

Растворы гиалуроновой кислоты 1-4% образуют псевдогели. В водной среде сила кислотности карбоксильной группы (pK) составляет порядка 3-4, поэтому, для сохранения электронейтральности в растворе, молекулу окружают положительно заряженные катионы металлов, Na+, K+, Мg2+ и Ca2+, что приводит к формированию прочной гелевой структуры с большим содержанием воды. С тяжелыми металлами и красителями дает нерастворимые в воде комплексы. Кроме того, гиалуронат специфически реагирует с белками и в результате дает нам сложные гелеобразные комплексы, нередко выпадающие в осадок .

В водном растворе гиалуроновая кислота имеет достаточно большие значения продольного размера полисахаридной цепи - примерно 1 нм, поэтому, находясь в организме млекопитающих, гиалуроновая кислота принимает наиболее компактную форму. Посредством рентгеноструктурного анализа, выяснено, что гиалуронат может формировать левую ординарную и двойную спирали, различные многонитевые плоские структуры, а также сверхспирализованные структуры с вариациями концентраций в различных частях цепи, формирующие плотную молекулярную сетку, что и составляет вторичную структуру полисахарида. Это, в основном, обусловливается образованием водородных связей, связыванием с катионами щелочных металлов и гидрофобными взаимодействиями. Третичная структура гиалуроновой кислоты - это сетка, обладающая высокими реологическими свойствами (домены отталкиваются друг от друга), способная поглощать значительное количество воды и электролитов, а также большие молекулы белков, однако точно определенного размера пор третичная структура не образует. Сети имеют весьма четкую упорядоченность, ввиду наличия электронных эффектов по функциональным группам и по заместителям. При этом молекула принимает наиболее энергетически выгодное положение, которое также зависит от ионного окружения .

3. Гиалуроновая кислота в природе, функции гиалуроната в зависимости от гистологической и цитологической принадлежности у различных организмов

Наличие гиалуронатсинтетаз и гиалуроновых кислот в капсулах вирусов и бактерий родов Streptococcus можно объяснить, как адаптативное эволюционное приспособление, которое бактерии и вирусы позаимствовали у высших животных, тем самым увеличив свою способность преодолевать иммунный ответ хозяина.

3.1 Гиалуроновая кислота в тканях млекопитающих

Гиалуронат - основной компонент межклеточного матрикса различных тканей млекопитающих, однако распределен неравномерно. Так, например, максимальная концентрация содержания гиалуроновой кислоты в теле человека наблюдается в синовиальной жидкости, пупочном канатике, стекловидном теле глаза и коже .

В коже глюкозоаминогликан содержится в интерстициальном пространстве и выполняет ряд функций: удерживает воду, тем самым поддерживает естественную эластичность и объём кожи, что так важно при воспалительных реакциях; участвует в процессах пролиферации и дифференциации кератиноцитов и иммунокомпетентных клеток, тем самым играет роль в поддержании нормального процесса роста и регенерации кожных покровов и осуществлении местного иммунитета, укрепляет волокна коллагена (рис. 2); служит естественным барьером, защищающим от действия свободных радикалов, болезнетворных агентов и химических веществ .

Рис. 2. Воздействие гиалуроновой кислоты на коллагеновые волокна.

При недостатке естественной гиалуроновой кислоты, например, при старении или заболеваниях кожи, развиваются дегенеративные нарушения: снижается местный иммунитет, ранозаживляющая способность, эластичность кожи, что ведёт к возникновению морщин. В хрящевой ткани ГК выполняет функцию структурного элемента матрикса, необходимого для связывания и удержания хондроитинсульфатпротеогликана для укрепления коллагенового каркаса хряща . В синовиальной жидкости гиалуронат обеспечивает смазку для подвижных частей сустава, уменьшая их износ. При воспалительных заболеваниях суставов (артритах), снижается количество гиалуроновой кислоты, уменьшается вязкость синовиальной жидкости, что ведет к ухудшению движения. Также гиалуроновая кислота играет важную роль в эмбриогенезе, является передатчиком сигналов клеточной подвижности.

Таким образом, функции гиалуроната весьма обширны, и по мере дальнейшего расширения сферы изучения ее свойств, будут открываться все новые факты о роли глюкозоаминогликана в организме человека и млекопитающих .

3.2 Гиалуроновая кислота как компонент капсул бактерий

4. Метаболизм гиалуроновой кислоты

Синтез гиалуроновой кислоты достаточно хорошо изучен. Для млекопитающих и бактерий родов Streptococcus и Pasteurella биохимия процесса принципиально не отличается. Для синтеза гиалуроновой кислоты необходимы компоненты полимера: глюкуроновая кислота и N-ацетилглюкозамин. Глюкуроновая кислота синтезируется посредством ряда ферментативных реакций из глюкозо-6-фосфата (рис. 3).

Рис. 3. Схема синтеза глюкозоаминогликанов

Глюкозо-6-фосфат под действием фермента α-фосфоглюкомутазы изомеризуется в глюкозо-1-фосфат. Далее фермент УДФ-глюкозопирофосфорилазы катализирует образование УДФ-глюкозы из уридиндифосфата и глюкозы. После происходит ферментзависимое окисление гидроксогрупп УДФ-глюкозы под действием фермента УДФ-глюкозодегидрогеназы. Результат - образование глюкуроновой кислоты.

N-ацетилглюкозамин синтезируется из фруктозо-6-фосфата. При биосинтезе аминосахара происходит перенос аминогруппы на фруктозо-6-фосфат. Донор аминогруппы - глютамин, фермент амидотранфераза. Результат - образование глюкозамина-6-фосфата, который изомеризируется мутазой в глюкозамин-1-фосфат, который подвергается ацетилированию при участии фермента ацетилтрансферазы в присутствии КoA до N-ацетилглюкозамин-1-фосфата, который необходимо активировать пирофосфорилазой до УДФ-N-ацетилглюкозамин-1-фосфата. Это энергозатратный процесс.

Последней стадией синтеза гиалуроновой кислоты будет осуществление гликозидтрансферазной реакции при помощи единственного фермента гиалуронатсинтетазы. Этот процесс также происходит с затратой энергии АТФ (на синтез 1 моля гиалуроната расходуется 2 моль АТФ) .

4.1. Гиалуронатсинтетазы: строение, функции, локализация, кинетические характеристики и механизмы катализа

Гиалуронатсинтетаза - металлопротеин молекулярной массы 49 кДа, фермент, требующий катионы металлов для координации с фосфатными группами (активации) и использующий глюкозидфосфаты в качестве субстратов. Является единственным в своем роде ферментом, катализирующим синтез гиалуроновой кислоты в организме млекопитающих и в клеточной стенке гемолитического стрептококка, а также у вируса PBCV-1 и бактерии Pasteurella multicida . Исследования, проведенные в 50-е годы, в лаборатории Meyer позволили установить характерные особенности фермента гиалуронатсинтетазы: функционирует при нейтральных значениях pH, для катализа требует активированные посредством конъюгации с уридиндифосфатом глюкуроновую кислоту и N-ацетилглюкозамин, а также присутствие катионов Mg2+ и Mn2+ для координирования фосфатных групп. Фермент проявляет высокую активность в присутствии кардиопина (находится в комплексе). Тип 1 был изучен в 1983-1998 г. Prehm и Asplund, характерен для гемолитического стрептококка млекопитающих: гиалуронатсинтетаза синтезирует гиалуроновую кислоту посредством присоединения углеродных остатков к восстанавливающему концу гиалуроната, при этом чередуются β(1-3) и (1-4)гликозидные связи .

4.2. Ферменты, осуществляющие деполимеризацию гиалуроновой кислоты

Катаболические реакции гиалуроновой кислоты основаны на ферментативном катализе посредством гиалуронатлитических ферментов. Гиалуронатлиазы были классифицированы в 1971 году в лаборатории Meyer . Концепция данной классификации предельно проста: фермент - катализируемая реакция - продукт реакции. В соответствии с данной классификацией выделяют три различных вида гиалуронидаз (гиалуронатлиаз):

Гиалуроноглюкозаминидазы (гиалуронидазы млекопитающих) - эндо-β-N-ацетилгексоаминидазы, расщепляют гиалуроновую кислоту до тетра- и гексасахаридов.

Гиалуроноглюкозаминидазы не облалают субстратной специфичностью, а также способны формировать поперечные сшивки между молекулами гиалуроната и хондроитинсульфата. Одной из дополнительной функции гиалуронидаз в организме млекопитающих является расщепление гиалуроната до дисахаров для получения энергии .

Гиалуронатлиазы (гиалуронидазы бактерий) - это эндо-β-ацетил-гексоаминоэлиминазы, гидролизирующие гиалуронат до 4,5-ненасыщенных дисахаров. Обладают высокой специфичностью к субстрату. У бактерий гиалуронидазы являются фактором патогенности, необходимой для инвазии и адгезии бактерий (для проникновения в организм млекопитающего).

5. Получение гиалуроновой кислоты

Все известные способы получения гиалуроновой кислоты можно разделить на две группы: физико-химический метод, который заключается в экстрагировании гиалуроната из тканей животного сырья млекопитающих, других позвоночных животных и птиц; и микробный метод получения ГК на основе бактерий-продуцентов.

5.1. Физико-химический способ: экстракция из животного сырья

Как было сказано ранее, гиалуроновая кислота встречается во многих тканях млекопитающих и птиц, и, в зависимости от гистологической принадлежности, содержание гиалуроновой кислоты и ее молекулярная масса могут варьировать. Кроме того, в различных тканях гиалуронат может находиться в комплексах с белками и родственными полисахаридами, что затрудняет его очистку с последующим выделением. В настоящее время для промышленного получения используют пупочные канатики новорожденных и гребни кур. Однако, кроме вышеперечисленных методов, описаны разнообразные способы выделения гиалуроната на основе стекловидного тела глаз крупного рогатого скота, синовиальной жидкости, суставных сумок, свиной кожи, плазмы крови и хрящевой ткани . При выделении биополимера прибегают к различным приёмам выделения: гомогенизация, экстракция, фракционное осаждение и т.п.

Любая процедура выделения гиалуронана включает предварительное разрушение органов и тканей, содержащих биополимер, и белково-углеводных комплексов. Разрушение достигается посредством методов измельчения и гомогенизации . После полученный гомогенат подвергают экстракции с использованием водно-органических растворителей. Ковалентно-связанные примеси пептидов удаляют методом ферментативного протеолиза, посредством обработки протеазами (папаином) или химической денатурацией (хлороформ, амиловый спирт с этанолом). Следующий этап — это адсорбция на активированном угле, посредством электродиализа. От примесей мукополисахаридов биополимер очищают методом осаждения хлоридом цетирпиридиния или посредством ионообменной хроматографии.

Наибольшее распространение, в силу доступности сырья и высокого содержания биополимера, получил метод выделения гиалуроновой кислоты из петушиных гребней. Экстракция производится смесью ацетона с хлороформом (удаление белка), водой, либо водно-спиртовой смесью (пропионовый, трет-бутиловый спирты) с последующей сорбцией на активированном угле, посредством электрофореза или на ионообменной смоле .

5.2. Микробный синтез, продуценты гиалуроновой кислоты

Экономически более выгодным является метод микробного синтеза гиалуроновой кислоты на основе бактериальных штаммов-продуцентов. Такой синтез при введении его в масштабы производства, будет иметь меньше издержек, таких как затраты на животное сырье и зависимость от сезонных поставок. И, напротив, производство гиалуронана на основе микробного синтеза позволит масштабировать производство и получить продукт высокой степени очистки, не содержащий примесей, а, следовательно, имеющий низкую аллергенность . С момента открытия способности бактерий к синтезу гиалуроновой кислоты, постоянно ведутся исследования возможности получения искомого полимера биотехнологическим путем, т. е. путем культивирования бактерий-продуцентов на питательных средах определенного состава в строго заданных условиях с последующим выделением целевого продукта. К продуцентам гиалуронана можно отнести капсулообразующие бактерии родов Streptococcus и Pasteurella . К штаммам-продуцентам предъявляется ряд требований:

Отсутствие патогенности и, особенно, гемолитической активности;

Способность к синтезу высокомолекулярной гиалуроновой кислоты;

Большие размеры капсул с высоким содержанием биополимера (капсулы при этом должны легко отделяться, желательно при экстракции);

Отсутствие гиалуронидазной активности, чтобы исключить потери целевого продукта;

Высокая способность к росту, при этом наиболее полное использование субстрата;

Сохранение стабильности физиолого-биохимических свойств.

Исследования в области поиска штамма, способного удовлетворить потребности в биополимере и соответствующего всем параметрам, привели к Streptococcus equi surbsp. equi. и Streptococcus equi surbsp. zooepidеmiсus .

Дикие типы стрептококков синтезируют внеклеточные белки, что снижает выход биополимера. Поэтому для получения воспроизводительных гиалуронидазанегативных, не гемолитических штаммов, проводили их модификацию посредством химического и УФ-индуцированного мутагенеза или ненаправленного мутагенеза с последующей селекцией. Генно-инженерные штаммы кишечных палочек, полученные на основе методов экспрессии оперонов, кодирующих синтез гиалуронатсинтетазы стрептококков на матрицу бактерий, в настоящее время не применяются, ввиду низких показателей выхода биополимера. Исключением можно считать генно-инженерный штамм Bacillus subtilis, показывающий высокие результаты выхода биополимера, при росте на сложных ферментированных средах .

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов Streptococcus zooepidemicus. Типичный состав синтетической питательной среды для бактерий рода Streptococcus, синтезирующих гиалуроновая кислоту, приведен ниже.

Источник углевода и энергии: глюкоза - 1000; аминокислоты: DL-аланин, L-аргинин, L-аспарагиновая кислота, L- цистин, L-цистеин, L-глютаминовая кислота, L-глутамин, L-глицин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, гидрокси-L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин, L-валин по 100; витамины: биотин - 0,2, фолиевая кислота - 0,8, никотинамид - 1, никотинамидадениндинуклеотид - 2,5, пантотенат кальция - 2, пиридоксаль — 1, пиридоксамин гидрохлорид - 1, рибофлавин — 2, тиамин гидрохлорид - 1; нуклеотиды: аденин - 20, гуанин гидрохлорид - 20, урацил - 20; соли органических и неорганических кислот: FeS04*7H20 - 5, Fe(N03)2*9H20 - 1, К2НР04 - 200, КН2Р04 - 1000, MgS04*7H20 - 700, MnS04 - 5, СаС12*6Н20 - 10, NaC2H302*3H2O - 4500, NaHC03 - 2500, NaH2P04*H20 - 3195, Na2HP04 - 7350.

Культивирование бактерий pода Streptococcus с целью получения ГК осуществляется, как правило, в периодических условиях. Питательную среду готовят однократно, растворяя необходимые компоненты среды в воде, после чего среду стерилизуют. Источник углерода стерилизуется отдельно. После засева за ходом ферментации следят по потреблению субстрата, росту концентрации клеток, образованию продукта (ГК), продуктов метаболизма, изменению рН среды. Максимальная концентрация ГК составляет приблизительно 5 г/л. Дальнейший рост содержания в среде ГК ведет к многократному возрастанию вязкости КЖ, резкому ухудшению массообменных характеристик процесса ферментации, трудностям при аэрировании и перемешивании. Концентрация ГК при периодической или периодической с подпитками по субстрату ферментации достигает заданного значения за 6 - 26 часа. Как правило, после выхода культуры в стационарную фазу процесс завершают. Клетки микроорганизмов инактивируют прогреванием при 60 - 80 °С. Биомассу отделяют одним из хорошо известных способов - флокуляцией, сепарированием, центрифугированием, фильтрованием. ГК из КЖ осаждают органическими растворителями или катионными ПАВ. Очистку проводят с помощью ультрафильтрационных методов, переосаждения или хроматографией.

Данные методы принципиально не отличаются от методов выделения ГК из животного сырья, описанных ранее. Например, в патенте на метод получения ГК описан следующий способ культивирования штамма-продуцента и выделения ГК. Ферментацию осуществляли в биореакторе на 3 л (коэффициент заполнения ферментера 0,5) на среде состава: 2,0 % глюкозы, 0,5 % ДЭ, 1,5 % пептона, 0,3 % КН2Р04, 0,2 % К2НР04, 0,011 % Na2S203, 0,01 % MgS04 * 7Н20, 0,002 % Na2S03, 0,001 % СоС12, 0,001 % MnCl2 и 0,5 % соевого масла; рН среды 7,0. Стерилизация среды осуществлялась глухим паром 120 °С в течение 15 мин. После охлаждения до комнатной температуры вносился инокулят культуры S. zooepidemicus штамм Ferm ВР-878 в количестве 0,1 л. Аэробное культивирование (расход воздуха 0,7 л/(л*мин) длилось 26 часов при постоянном термостатировании (35 °С) и перемешивании среды (300 об/мин). рН среды поддерживался постоянным на уровне 7,0. На 24-ом часу культивирования в асептических условиях вносилась подпитка по субстрату - 100 мл 50 % раствора глюкозы. Процесс завершали по прошествии 26 часов культивирования.

Для выделения ГК проводили следующие процедуры. К бактериальной культуре добавляли 3,2 л дистиллированной воды. После тщательного и длительного перемешивания биомассу отделяли центрифугированием. Супернатант концентрировали до 1,6 л на ультрафильтрационном половолоконном аппарате и проводили диализ против дистиллированной воды. В образовавшийся раствор вносили ацетат натрия до конечной концентрации 0,5 % и проводили осаждение 5 л этилового спирта. Осадок полисахаридов отделяли центрифугированием. Очистку ГК проводили, растворяя полученный осадок в дистиллированной воде (0,5 л) и добавляя 4 % водный раствор бромида цетилпиридиния. Осадок связанной с катионным ПАВ ГК отделяли и растворяли в 40 мл 0,3 М раствора хлорида натрия. Нерастворенную часть осадка отбраковывали. К раствору добавляли 120 мл этанола для осаждения ГК. Осадок отделяли и растворяли в дистиллированной воде, после чего проводили очистку на ионообменной смоле и повторное спиртоосаждение. Выход очищенного гиалуроната натрия с одной ферментации составлял 7,8 г. Содержание белка в препарате составляло менее 0,05 %. Молекулярная масса ГК равнялась 1,005 МДа .

Другие способы биотехнологического получения ГК, описанные в патентах, незначительно отличаются составом сред.

Биотехнология микробного синтеза гиалуроновой кислоты на основе штаммов бактерий Bacillus subtilis. К способам получения гиалуроновой кислоты, относится метод биосинтеза ГК на основе генно-модифицированного штамма Bacillus subtilis, содержащий генетическую конструкцию, включающую промотор, функционально активный в указанной клетке, и кодирующую область, состоящую из нуклеотидной последовательности, кодирующей стрептококковую гиалуронансинтазу (hasA); последовательности, кодирующей UDP-глюкозо-6-дегидрогеназу Bacillus (tuaD) или аналогичный фермент стрептококкового происхождения (hasB), и последовательность, кодирующую бактериальную или стрептококковую UDP-глюкозопирофосфорилазу.

Метод включает культивирование клетки-хозяина Bacillus в условиях, подходящих для продуцирования гиалуроновой кислоты, при этом клетка-хозяин Bacillus содержит конструкцию нуклеиновой кислоты, включающую последовательность, кодирующую гиалуронансинтазу, функционально связанную с промоторной последовательностью, чужеродной в отношении последовательности, кодирующей гиалуронансинтазу; и извлечения гиалуроновой кислоты из среды культивирования .

6. Применение гиалуроновой кислоты

Гиалуроновая кислота - вещество с огромным спектром действия, и поистине удивительными свойствами. Спустя несколько лет после открытия гиалуроновой кислоты начинается разработка препаратов на основе глюкозоаминоликана для наружного применения в качестве средства, повышающего регенеративные и барьерные функции кожи. Однако, как известно, субстанция, изготовленная из животного сырья, требует тщательной очистки от примесей, что накладывает дополнительные издержки производства и отражается на цене конечного продукта . Действительно высокая себестоимость гиалуроновой кислоты долгое время препятствовала расширению спектра применения биополимера, однако постепенное увеличение знаний о свойствах полимера и внедрение биотехнологических методов на основе микробного синтеза, позволило существенно снизить себестоимость субстанции, подталкивает развитие разнообразных приложений, в которых находит применение гиалуроновой кислоты в областях медицины, пищевой, фармацевтической, космецевтической промышленности. Ведутся исследования по созданию лекарственных препаратов и БАД на основе гиалуроната с противовоспалительным, иммуномодулирующим и пролонгирующим действием, которые, возможно, в будущем можно будет применять в качестве основы терапии заболеваний в онкологии, оториноларингологии, хирургии, эндокринологии и многих других сферах человеческой деятельности .

6.1. Гиалуроновая кислота в медицине

Гиалуроновая кислота обладает антимикробным и регенерирующим действиями, поэтому на основе ее разработаны препараты для эффективной терапии поражений кожи. Созданные изначально как препараты против ожогов, данная группа активно применяется при терапии трофических нарушений кожного эпителия посттромботического генеза. Доказано, что низкомолекулярная гиалуроновая кислота (менее 10 кДа) оказывает ангиогенное действие, тем самым снижая образование спаек и разрастание соединительной ткани, так же улучшает микроциркуляцию и снижает эффекты воспаления .

Гиалуронат имеет свойства повышать активность интерферона, тем самым проявляя выраженное противовирусное действие. Была доказана высокая активность препаратов на основе гиалуроновой кислоты в отношении вируса герпеса и некоторых других. По данным некоторых источников высокомолекулярная гиалуроновая кислота является пролонгатором действия других БАВ, растворенных в ней Лекарственные вещества, за счет высокой вязкости гиалуроната, выделяются в ткани в течение длительного времени. Создается так называемое депо, из которого БАВ постепенно диффундирует в среду организма. Это позволяет увеличить терапевтическую широту, потенцировать в некоторых случаях фармакологический эффект, снизить побочные эффекты, а также расширить возможности применения других лекарственных веществ (стероидных препаратов, антибиотиков, пептидов, НПВС и т.д.) в комбинации с гиалуроновой кислотой. Широко применение гиалуроната в хирургии:

1. Офтальмологическая хирургия - гиалуронат натрия используется в качестве репаративного средства при оперативных вмешательствах на эндотелиальном слое роговицы (удаление катаракты).

2. Хирургическая травматология - при хирургических операциях с обширным сечением хрящевой ткани и осложненных артритах используется в качестве регенерирующего, смазывающего, противовоспалительного и анальгезирующего средства .

6.2. Гиалуроновая кислота в косметологии

Применение гиалуроната и его солей в косметологии основывается на способности гиалуронатсодержащих препаратов оказывать местное противовоспалительное, ранозаживляющее и иммуномодулирующее действие. Способность задерживать в межклеточном пространстве воду является основой механизма коррекции возрастных деформаций кожи. На данный момент в косметологической практике стали весьма популярны инъекции 1-3% водного раствора гиалуроновой кислоты для внутри- или подкожного введения. Введение гиалуроновой кислоты в эпителий в виде водного геля повышает эластичность и упругость тканей, тем самым придавая коже прежние качества и красоту . Однако широчайшее применение высокомолекулярный гиалуронат получил при изготовлении различных комбинированных кремов и гелей для наружного применения. Данный вид продукции имеет ту же направленность, что и инъекции - восстановить реологические свойства кожи, тем самым предотвратить образование морщин, прыщей и т.д. .

Гиалуроновая кислота обладает свойствами, которые делают ее крайне подходящей для использования в качестве дермального филлера: она способна связывать большое количество воды, присутствует в коже в естественных условиях и не склонна вызывать нежелательные реакции. Филлеры (Fill — от англ. — наполнять) - это инъекционные кожные наполнители, которые используются в косметологии для уменьшения глубины морщин, носогубных складок и складок в уголках рта . Филлеры также используются для придания дополнительного объема лицу в области скул, щек и губ В настоящее время широкое распространение получила группа ГК- филлеров семейства Surgiderm и Juvederm Ultra А. Surgiderm и Juvederm Ultra представляют собой однородные монофазные гели гиалуроновой кислоты неживотного происхождения. Они являются одними из наиболее пластичных материалов для инъекционной контурной пластики, что определяет не только легкость их введения, но и равномерное распределение в тканях, позволяет полностью исключить контурирование материла .

Современная серия препаратов на основе гиалуроновой кислоты PRINCESS®. «PRINCESS® Filler» представляет собой стерильный, биодеградируемый, вязкоэластичный, прозрачный, бесцветный, изотонический и гомогенизированный гелевый имплантат для интрадермальных инъекций. Содержащаяся в «PRINCESS® Filler» гиалуроновая кислота с поперечно-сшитой структурой продуцируется бактериями Streptococcus equi, представлена в виде раствора с концентрацией 23 мг/мл в физиологическом буфере .

Заключение

Гиалуроновая кислота - продукт животного происхождения, имеющий поистине удивительные свойства и высочайший спектр применения как сейчас, так и в перспективе дальнейшего ее использования. Поэтому совсем не удивительно, что ее свойства изучаются во всем мире.

В настоящее время исследуются процессы и механизмы действия гиалуроновой кислоты на ткани организма. Выдвигаются гипотезы относительно роли гиалуроната и родственных глюкозоаминогликанов в процессах пролиферации, дифференциации, миграции животных клеток в процессах иммунного ответа и эмбриогенеза, а также делаются попытки по установлению связи между молекулярной массой, степенью очистки и эффективностью препаратов.

Физико-химический способ, в виду своей экономической нерентабельности, постепенно уступает место биотехнологическому методу синтеза биополимера. Были проведены поиски продуцентов, соответствующих всем параметрам, а также различного рода испытания на предмет изучения метаболизма гиалуроновых кислот. Результатом исследования служило выявление прямая связи между способностью синтеза гиалуроновых кислот и наличием специфических ферментов гиалуронатсинтетаз.

В последние 20 лет оперон, кодирующий синтез гиалуронатсинтетаз, был выделен в чистом виде и неоднократно экспрессировался различным видам микроорганизмов с целью получения генно-модифицированных штаммов-продуцентов гиалуроновых кислот. Однако результата не могли добиться очень долгое время. Генно-модифицированные штаммы производили неактивную форму фермента, следовательно, способностью к продукции гиалуроновых кислот не обладали. Но недавно проведенные исследования по созданию генно-модифицированного штамма на основе бактерий Bacillus sibtilis показали хорошие результаты. Штаммы бактерий активно синтезировали гиалуронат высокой молекулярной массы, лишенной пептидных включений и связей с родственными мукополисахаридами.

Однако поиск штаммов-продуцентов сейчас продолжается. Проверяются возможности синтеза гиалуроната бактериями рода Streptomyces, и ведется разработка биотехнологии на их основе; кроме того, изучаются пути использования и внедрения гиалуроната во все сферы жизнедеятельности общества.

Библиографическая ссылка

Савоськин О. В., Семенова Е. Ф., Рашевская Е. Ю., Полякова А. А., Грибкова Е. А., Агабалаева К. О., Моисеева И. Я. ХАРАКТЕРИСТИКА РАЗЛИЧНЫХ МЕТОДОВ ПОЛУЧЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ // Научное обозрение. Биологические науки. – 2017. – № 2. – С. 125-135;
URL: https://science-biology.ru/ru/article/view?id=1060 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

© 2024
kropotkinkadet.ru - Портал о развитии ребенка и воспитании детей