04.08.2023

Автоклавное формование препрега. Формование с помощью вакуумного мешка Режим автоклавного формования


На обрабатываемую форму выкладывают волокнистый пропитанный материал (при необходимости может пропитываться и на форме). На него накладывают вакуумный мешок с металлическими патрубками, соединенными с резиновыми шлангами. Вакуум-насосами из герметичной полости, образованной между стеклопластиковой диафрагмой откачивают воздух, чтобы давление там было ниже, чем приложенное к диафрагме.

Благодаря образующемуся перепаду давления с разных сторон диафрагмы, она прижимается к формуемому изделию, уплотняя материал и придавая необходимую форму.

Затвердевание наблюдается при соединении вместе отдельных слоев стеклопластика. Уплотнение композиции приводит к устранению пустот и удалению избытка смолы.

При отвердевании изделий, получаемых формованием с эластичной диафрагмой, необходимо избегать образования пузырей, а также тщательно контролировать давление, температуру и массовое соотношение между волокном и смолой.

Схема формования:

а) положение до вакуума б) положение после вакуума

1 – форма

2 – вакуумный мешок

3 – пропитанный стеклонаполнитель

4 – металлический патрубок

5 – сальниковая прокладка

6 – зажимы

7 – отформованное изделие
5.4. Автоклавное формование. Компоненты. Операции. Оборудование.

Режимы.

1 – канал для соединения с атмосферой или вакуумом

2 – плита формы

3 – коллектор для отсоса воздуха из пакета

4 – уплотнение диафрагмы

5 – боковое выпускное отверстие

6 – эластичная перегородка

7, 8 – слой с вентиляционным отверстием

9 – диафрагма

10 – промежуточная плита

11 – перфорированный слой

12 – впитывающие слои

13 – разделительная ткань

14 – внешний слой

15 – слоистый армированный пластик

При автоклавном формовании для сжатия слоевого пакета во время отверждения поддерживается давление 0,35 – 0,7 МПа с одновременном нагревом горячими газами. Одновременно производится вакуумирование материала для удаления захваченного воздуха и летучих продуктов.

Вакуум обычно прикладывается на начальных стадиях циклах отверждения, в то время, как давление в автоклаве поддерживается на протяжении всего цикла нагрева и охлаждения. Вентиляционные отверстия, связанные с атмосферой или вакуумом предназна­чены для отвода летучих продуктов и захваченного воздуха из отверждающегося пакета ар­мированного пластика. По сравнения с другими способами формования метод с помощью эластичной диафрагмы, автоклавный, позволяет получить изделия с более точной толщиной и меньшей пористостью.

Лекция 15.

5.5. Намотка. Компоненты. Операции. Оборудование. Режимы .

Намотка - метод переработки КМ в изделия, при которых наполнитель, предварительно


покрытый связующим (сухая намотка) либо пропитывается во время намотки (мокрая на­мотка) непрерывно подается под определенным углом на вращающуюся съемную оправку, которая после намотки помешается в термокамеру для отверждения изделия, после отверждения с помощью кабестана стаскивается с оправки.

Данный метод переработки КМ в изделия включает в себя двуосный способ, при кото­ром каждый следующий спиральный слой накладывается ряд за рядом, перекрещивание волокон исключено.

Косой перекрестный , при котором при прохождении раскладчиком траверсы одного цикла нить укладываются в виде непрерывной спирали с изменением направления, на противоположных концах.

Круговой , при котором намотка происходит перпендикулярно оси вращения.

Одноосный способ, при котором дорожка нити делает полный ход по длине раскладчика, после чего следующий ложиться рядом с предыдущим.

Планетарный , при котором дорожка нити ложится в плоскости пересекающей поверхность намотки.

Предварительно пропитанный связующим волокнистый наполнитель протаскивается со скоростью 0,6 - 6,1 м/мин через формующее отверстие, обогреваемое фильерой определенной формы, где происходит уплотнение пучка волокнистого наполнителя.

Применяется для производства различных цилиндрических изделий из стеклопластика (труб, баков и др.). В настоящее время используют намотку пропитанных стеклотканей и холстов или стекложгутов и лент на оправку. Наиболее простым методом изготовления труб из стеклопластиков считается периодический метод намотки. Трубы изготавливают на специально намоточном или токарном станке, приспособленном для этих целей. Вначале про­цесса жгуты, нити, сетки, ткани или холсты разматывают с рулонов, пропитывают синтетическими связующими, а затем подают при равномерном натяжении на вращающуюся метал­лическую оправку, которая определяет внутренний диаметр изделия и его конфигурацию. Перед намоткой оправку предварительно обезжиривают, смазывают тонким слоем адгезион­ной смазкой, обматывают целлофаном. На рисунке показана схема изготовления цилиндри­ческого изделия большой длины из нитей или жгутов с одновременной пропиткой во время намотки.

1 -подвижный стол

2 -шпули нитей или жгутов

4 - пропиточная ванна

5 - жидкое связующее, не содержащее растворителя

6 - отжимные валики

7 - винт для передвижения стола

8 - оправка

9 - привод на оправку

10 - изделие

11 - шпулярник.

В соответствии с. этой схемой шпули нитей и жгутов вставляются в шпулярник, расположенный на подвижном столе этот стол с помощью винта 7 или тяги во время намот­ки способен передвигаться туда и обратно, вдоль наматываемого изделия. Со шпулярника нити собираются в пучок, этот пучок проходит через пропиточную ванну 4 наполненную жидким связующим без растворителя, затем между отжимными валиками 6, служащих для удаления избытка связующего. Пропитанный пучок, во время хода стола, наматывается под некоторым углом на оправку 8 имеющую привод 9 для вращения. После того, как намотан один слой пропитанного наполнителя на всю длину изделия, ход стола переключается на об­ратный. И под противоположным углом производится намотка следующего слоя, в результа­те получается перекрестное слоевое расположение нитей

После получения изделия с нужной толщиной стенки, оно снимается со станка и помещается в печь для отверждения связующего проникшего в поры наполнителя во время пропитки и намотки. Поскольку связующее проникло в поры наполнителя за счет капилляр­ных сил, то при выборе нитей и их степенью крутки следует учитывать возможные неблаго­приятные влияния усадочных явлений возникающих при отверждении связующего.

Для производства из препрегов многослойных изделий используется технология автоклавного формования. Название метод получил, благодаря использованию автоклава, который позволяет обрабатывать внешнюю часть детали при высоком давлении. Изначально технология находила применение для фиксации деталей при производстве изделий для самолетов. В форму укладывают препрег или пакет, состоящий из нескольких слоев. Вместе с формой препрег помещается в вакуумный мешок, где происходит постепенное снижение давления. Формование с помощью вакуумного мешка представляет собой метод, который предполагает отверждение изделия путем создания градиента давления по отношению к обычному атмосферному давлению.

Этапы автоклавного формования:

  • Заданное количество слоев препрега укладывается на форму.
  • Отверждение осуществляется в автоклаве под высоким давлением и при высокой температуре.
  • Отвержденные изделия подвергаются обработке: зачистке, отделке.

Вакуумный мешок зачастую применяется для отверждения в автоклаве. Основные свойства изделия определяются типом мешка, методом выкладки препрега.

Специфика технологии автоклавного формования

Применение вакуумного мешка дает возможность получить изделия из стеклопластика высокого качества с низким показателем пористости. Поверхность изделий отличается высоким качеством. С помощью технологии можно формовать крупногабаритные изделия. Особенностью метода является возможность получать детали равномерной толщины.

Технология имеет свои недочеты: стоимость метода высока, производство трудоемко, не подходит для массового изготовления деталей. Но эффективность технологии неоспорима при выпуске деталей из легких стеклопластиков.

Снизить стоимость процесса производства и изготавливаемых методом деталей можно путем автоматизации отдельных операций, механизации процесса. Для вакуумных мешков стоит подобрать иные материалы, что также повлияет на стоимость изделий. Неоднократно можно применять мешки из силиконового каучука. В процессе производства важно точно подобрать температурные показатели и уровень давления, так как данные параметры влияют на свойства детали.

Стоит помнить, что применение вакуумных мешков связано с пожароопасностью. Несоблюдение требований безопасности может стать причиной взрывов и возгорания в процессе автоклавного формования. Для обеспечения безопасности можно использовать инертную газовую среду с содержанием азота.

При производстве изделий из полимерных композиционных материалов необходимо уделить особое внимание выбору технологии производства. От данного решения зависит не только экономическая составляющая, но и качество конечного изделия.

Специалисты нашей компании помогут Вам с выбором технологии производства, а также подберут необходимые материалы и оборудование.

Позвоните нам, и у Вас не останется сомнений в правильности Вашего решения!

РУЧНОЕ ФОРМОВАНИЕ

Производство изделий методом ручного (контактного) формования является базовым процессом производства изделий из полимерных композиционных материалов. К плюсам данного метода можно отнести простоту технологии и минимальные затраты на подготовку и проведение процесса формования (нет необходимости в закупке дорогостоящего оборудования). Минусом данного метода является низкое качество конечного изделия — высокое содержание смолы, а, как следствие, высокий вес и низкие прочностные характеристики. Данный метод получил широкое распространение в производстве крупногабаритных изделий, к которым не предъявляются высокие требования по физико-механическим свойствам. В основном технология применима к единичным изделиям или мелкосерийному производству.

При данном процессе формования предварительно раскроенный армирующий материал укладывается в форму, обработанную разделительным агентом и покрытую гелькоутом для создания защитного слоя конечного изделия. После этого армирующий материал пропитывается подготовленным эпоксидным составом (смола и отвердитель) вручную — при помощи кисти или валиков. До момента отверждения необходимо уплотнительным валиком «прокатать» всю поверхность изделия. Если этого не сделать, то в конечном изделии возможно наличие пузырьков воздуха, негативно влияющих на его качество. После отверждения происходит съем изделия из формы и дальнейшая механическая обработка.

ВАКУУМНОЕ ФОРМОВАНИЕ

Производство по технологии вакуумного формования обеспечивает более высокое качество конечно изделия по сравнению с классическим ручным методом.Основное отличие от контактного метода состоит в том, что после пропитки армирующего материала эпоксидной системой, на оснастку, при помощи герметизирующего жгута, крепится вакуумный мешок. За счет создаваемого вакуумным насосом разряжения из ламината удаляются пузырьки воздуха и излишки смолы. В остальном процесс идентичен методу ручного формования.К плюсам данного метода можно отнести простоту технологии и минимальные затраты на подготовку и проведение процесса формования (нет необходимости в закупке дорогостоящего оборудования). Более высокое качество конечного изделия, по сравнению с контактным методом.Минусом данной технологии является ограниченное время на создание вакуумного мешка и, как следствие, высокие требования к квалификации персонала.

ВАКУУМНАЯ ИНФУЗИЯ

Технология производства изделий методом вакуумной инфузии получила широкое распространение среди производителей изделий из полимерных композиционных материалов. Основными причинами популяризации данной технологии является низкая стоимость оборудования (в сравнении с автоклавным методом и RTM-технологией), а также высокое качество конечного изделия и возможность формования крупногабаритных изделий при относительно небольших временных затратах.Вакуумная инфузия — закрытый процесс формования.На подготовленную оснастку укладывается предварительно раскроенный армирующий материал. Набор толщины конечного изделия осуществляется сразу, на этапе укладки армирующих тканей, путем выкладки требуемого количества слоев ткани или с использованием сэндвич-структур — пенопласта или сотовых панелей. Вместе с армирующим материалом укладывается набор вспомогательных расходных материалов. Будущее изделие накрывается вакуумной пленкой и крепится к фланцам оснастки при помощи герметизирующего жгута. К вакуумному мешку, через установленный вакуумный порт, подключают вакуумный насос, чтобы убедиться в правильной сборке пакета и отсутствии утечек воздуха. Обнаруженные утечки необходимо устранить на данном этапе, так как после подачи смолы процесс будет необратим.Благодаря созданному разряжению, предварительно дегазированная смола, по вакуумной трубке поступает в вакуумный мешок. При использовании проводящей сетки смола наиболее быстро и равномерно пропитывает слои армирующего материала. После пропитки всех слоев линию подачи смолы перекрывают, при этом вакуум оставляют включенным. Таким образом, исключается наличие воздушных включений в конечном изделии. В зависимости от типа эпоксидной смолы и требуемого конструктива, изделие может быть дополнительно отверждено в печи или в автоклаве. В линейке материалов для вакуумной инфузии, поставляемых нашей компанией, присутствуют высокотемпературные расходные материалы для процессов постотверждения.При использовании данной технологии обеспечивается высокий конструктив конечного изделия за счет качественного соотношения смолы и армирующего материала. Воздушные включения и излишки удаляются из армирующего материала путем постоянно поддерживаемого вакуума. Процесс полностью обратим до момента подачи смолы. Таким образом, нет ограничений по времени при сборке вакуумного мешка.

ИНЖЕКТИРОВАНИЕ В ФОРМУ (RTM-процесс)

RTM-процесс (Resin Transfer Molding) — процесс подачи (инжекции) смолы в закрытую форму. Классический RTM подразумевает использование алюминиевых матрицы (нижняя часть) и пуансона (ответная часть). При производстве по RTM-технологии обеспечивается глянцевая поверхность с обеих сторон.Предварительно раскроенный сухой армирующий материал укладывается в подготовленную форму. Закрытие формы фиксируется либо крепежными болтами, либо смыкание формы происходит в прессе. В последнем варианте целесообразно использование пресса с плитами нагрева, для равномерного прогрева связующего в процессе инжектирования смолы. Для подачи смолы используется специальное инжекционное оборудование, обеспечивающее качественное смешение компонентов, подогрев подающих магистралей и необходимое давление смолы на выходе. После раскрытия формы изделие отправляют на участок механической обработки.Преимуществом данной технологии является возможность производства изделий различной геометрической формы за одну инжекцию, что позволяет исключить необходимость склеивания высоконагруженных элементов, и, как следствие, повысить физико-механические свойства изделия. Данная технология применима при среднесерийном производстве высоконагруженных конструктивных элементов.

АВТОКЛАВНОЕ ФОРМОВАНИЕ

Процесс производства деталей автоклавным методом проходит при высоком давлении и температуре, что позволяет получить изделия высокой прочности. Основное развитие автоклавная технология получила благодаря использованию конструкций из углепластика в аэрокосмическом секторе и авиастроении, за счет низкого веса и высоких физико-механических свойств конечных изделий.Предварительно раскроенный препрег или многослойный пакет из препрега на основе углеродных волокон укладывают в форму, к которой при помощи термостойкого герметизирующего жгута крепят в вакуумный мешок. За счет использования вакуумного насоса в вакуумном мешке создается разряжение и удаление воздушных включений из ламината. Далее, изделие на специальной тележке, перемещающейся по рельсам, загружается в автоклав. Не отключая вакуум, в автоклаве создают избыточное давление и нагрев до температуры отверждения препрега. Использование вакуумного насоса позволяет свести пористость ламината к минимуму, что гарантирует высокое качество конечного изделия.Использование автоклавной технологии позволяет производить крупногабаритные изделия, к которым применяются самые высокие требования по качеству. Данный метод малопригоден для крупносерийного производства и находит большее применение в производстве небольших партий высококачественных изделий. Минусом автоклавного метода является высокая стоимость самого автоклава, а также наличие ручного труда, что требует высокой квалификации персонала.

ФИЛАМЕНТНАЯ НАМОТКА

Технология филаментной намотки заключается в нанесении волокон, пропитанных в ванне со смолой, или намотке препрега на вращающуюся оправку, в точном соответствии заданным требованиям. За правильность намотки волокон отвечает специальное программное обеспечение, при помощи которого создается рабочий цикл.В специальный стеллаж (шпулярник) устанавливаются бобины с ровингом, в соответствии с требованиями к ширине наматываемой ленты. Волокна формируются в ленту и попадают в ванну со смолой, где пропитываются эпоксидным связующим (или любой другой системой смол). На выходе из пропиточной ванны излишки смолы снимаются с пропитанного материала и попадают обратно в ванну. Количество связующего в волокнах, а также натяжение нитей регулируется с высокой точностью, в соответствии с техническими требованиями Заказчика. Пропитанные волока наматываются на вращающуюся оправку под разными углами. Затем происходит набор толщины создаваемого изделия. Возможность полного контроля процесса намотки и задания большого количества параметров гарантирует высокое качество конечного изделия.При помощи технологии филаментной намотки создаются тела вращения различной формы: цилиндрической, конической, оживальной. На станках намотки возможно производство баллонов, емкостей и цистерн для воды и сжиженного газа; производство трубопроводов; изготовление деталей для аэрокосмического и авиационного сектора. При использовании данной технологии для производства баллонов высокого давления используют многошпиндельные версии станков для обеспечения крупносерийного производства.

ПУЛТРУЗИЯ

Пултрузия — процесс, который используется для производства непрерывного армированного композиционного материала с постоянным поперечным сечением.
Стандартно, в качестве армирующего материала используется стеклоровинг (стекломат, стекловуаль), а в качестве связующего — полиэфирная смола. Выбор данных материалов обусловлен их невысокой стоимостью, что имеет принципиальное значение при непрерывном производстве профилей (стержней, труб, пластин, уголков, коробов и т.д.).
Непрерывный стеклоровинг (мат, нить, ткань или вуаль) разматываются со шпулярника и помещаются в ванну со смолой. Конструкция ванны обеспечивает тщательную пропитку армирующего материала. Смола может содержать наполнители или добавки, в зависимости от требований к конечному изделию. Пропитанный армирующий материал проходит через специальные валки на выходе из ванны, для удаления излишков смолы. Далее материал проходит через нагреваемую формообразующую фильеру для получения требуемой геометрии изделия. В фильере происходит полимеризация профиля, благодаря нагреву, осуществляемого электрическими ТЭНами. Тянущее устройство (захваты) обеспечивает непрерывное вытягивание профиля из фильеры. Полученное изделие разрезают с помощью пилы (резака), установленной в конце пултрузионной линии. Скорость процесса, усилие тянущих устройств, нагрев фильеры, а так же длина отрезаемого изделия регулируются и задаются с помощью системы управления.

Пултрузия — высокосерийное производство различных профилей постоянного поперечного сечения. Преимуществами данной технологии являются высокая скорость и непрерывность производства, низкая стоимость связующих, высокая коррозионная стойкость и низкий вес (по сравнению с металлами), низкий тепловой коэффициент линейного расширения и хорошие электроизоляционные свойства. К минусам данной технологии можно отнести высокую стоимость фильеры и, соответственно, высокую себестоимость конечного продукта при небольшой серии, а так же ограниченность производства — для производства изделия другой геометрии или размеров необходима новая фильера.

Компания «Современные полимерные технологии» предлагает полный спектр материалов и оборудования для реализации данных технологий на Вашем производстве.

Путем различных комбинаций связующих и наполнителей получают ПКМ с необходимыми физико-механическими и физическими характеристи­ками для эксплуатации в различных условиях. Процессы производстваПКМ и изделий из них часто совмещены. Это позволяет существенно сни­зить общую стоимость изделий и, несмотря на сравнительно большую тру­доемкость, сделать их экономически конкурентоспособными с обычными промышленными товарами.

Намотка. На стальную оправку (дорн), повторяющую форму изделия и являю­щуюся основной рабочей частью намоточного агрегата, наматывается с натяжением армирующий волокнистый наполнитель (волокно, нити, жгуты, ровницы, ленты, ткани) мокрым (наполнитель пропитывается в процессе намотки) или сухим (используются препреги) способом. Наматывается также непрочитанный наполнитель, после чего заготовку пропитывают связующим в замкнутой форме под давлением. По кинематическому при­знаку различают токарную, шлифовальную и обмоточную схемы намотки, по типу укладки армировки в намотанном изделии - окружную, спиральную, поперечную, продольную, планарную и различные их сочетания. Намотанная заготовка формуется с помощью компрессионного прессования, вакуумного пресс-камерного или вакуумно-автоклавного метода.

Параметры процесса (натяжение, шаг намотки, угол намотки, скорость намотки) определяются типом ПКМ, конфигурацией и габаритными размерами изделия.

Оборудование: специальные намоточные агрегаты на основе модерни­зированных токарных и шлифовальных станков.

Применяется для изготовления изделий, имеющих форму тел враще­ния: цилиндров, конусов, сфер, труб, оболочек различных форм.

Прессование заключается в пластической деформации материала при одновременном воздействии на него тепла и давления и в последующей фиксации формы изделия. Проводится, как правило, в прессформах.Прессформы устанавливаются на прессах, назначение которых - создание не­обходимого давления прессования. Помещенный в пресс-форму холодный или предварительно подогретый материал разогревается до температуры прессования и, подвергаясь под давлением прессования деформации од­номерного течения, заполняет полость пресс-формы и одновременно уп­лотняется. Фиксация формы изделия происходит в результате отверждения реактопластов или охлаждения термопластов, либо охлаждения под дав­лением до температуры ниже температуры стеклования полимера (для тер­мопластов).

Параметры процесса: начальная температура ПКМ и пресс-формы, удельное давление и скорость его приложения, время выдержки в пресс-форме, температура извлечения изделия из пресс-формы, давление прессо­вания 0,01-250 МПа. При переработке реактопластов решающее влияние на режим оказывает скорость отверждения, а при прессовании термоплас­тов - скорость охлаждения сформованного изделия.

Оборудование: прессы.

Применяется для получения изделий сложной формы, разнообразных размеров и толщин из ПКМ с порошкообразными, волокнистыми, листовыми волокнистыми наполнителями на основе термопластичных и реактивных связующих.

Метод прессования имеет разновидности: прямое прессование (горячее

или компрессионное), литьевое прессование (трансферное), профиль, прессование (штранг-прессование).

Прямое прессование. Пресс-материал в виде порошка, таблеток лиь^ заготовок из листовых или волокнистых полуфабрикатов загружают в открытую полость пресс-формы или между обогреваемыми плитами пресса и подвергают воздействию тепла и давления.

Параметры процесса определяются типом ПКМ, конфигурацией и га­баритными размерами изделия.

Оборудование: прессы.

Применяется для переработки термореактивных и термопластичных ПКМ, изготовления толстых листов, блоков, толстостенных изделий сложной формы и переменного сечения; заготовок простой формы, под­вергающихся дальнейшей механической обработке; изделий из ПКМ, со­держащих большое количество абразивных частиц.

Литьевое прессование. Предварительно размягченный (пластицирован-ный) материал впрыскивается перемещающимся в осевом направлении поршнем из загрузочной камеры через литниковые каналы в предварительно замкнутую пресс-форму.

Параметры процесса: удельное давление впрыска 150-200 МПа, дав­ление в пресс-форме 50-65 МПа.

Оборудование: специальные трансферные гидравлические прессы с двумя (верхним и нижним) рабочими плунжерами или универсальные прессы с одним верхним плунжером.

Применяется главным образом для переработки ПКМ на основе быстроотверждающихся реактопластов и высоковязких термопластов.

Профильное прессование. Пресс-материал продавливается через про­фильную фильеру с открытыми входными и выходными отверстиями или специальную головку. В процессе продавливания происходит формование и получение данного профиля, а в случае термореактивных материалов - их отверждение. Процесс с периодически повторяющимся циклом, обеспе­чивающий непрерывное производство профилей благодаря тому, что за один цикл выдавливается не вся порция ПКМ и оставшийся подогретый ПКМ сваривается с вновь поступившей порцией. Метод занимает проме­жуточное положение между прессованием и экструзией.

Параметры процесса: давление прессования 250-400 МПа для ре­актопластов и 40-50 МПа для термопластов.

Оборудование: специальные горизонтальные прессы, поршень которых медленно совершает рабочий ход и быстро возвращается в исходное по­ложение, пресс-форма со сменной матрицей.

Применяется (наряду с экструзией) для получения труб, стержней и других профильных изделий большой длины.

Автоклавный метод. Заготовка ПКМ, герметично упакованная в ре­зиновый чехол, помещается в автоклав. Давление прессования создается паром, горячей водой, глицерином или сжатым воздухом, нагнетаемым в автоклав. Обогрев осуществляется паром, горячей водой, жидкостью или обогревателями, расположенными в форме.

Параметры процесса: давление формования 0,5-7 МПа; температур­ный режим определяется типом ПКМ. Заготовка формуется при всесторон­нем равномерном давлении. Оборудование: автоклав.

Применяется для изготовления больших серий крупных и сложных, изделий с высокими физико-механическими показателями

Пневматическое формование.Этот метод имеет две разновидности: негативное формование, когда сжатый воздух выполняет роль пуансона, и позитивное формование, когда сжатый воздух выполняет роль матрицы. В предварительно нагретую форму быстро переносится разогретая заготовка, которая герметично за­жимается по периметру формы. Затем производится формование под действием сжатого воздуха, нагнетаемого в пневмокамеру, после чего изделие охлаждается и извлекается из формы.

Параметры: давление сжатого воздуха до 2,0 МПа, температура зави­сит от свойств формуемого материала.

Оборудование: гидропресс, матрица (или пуансон), системы обогрева и подачи сжатого воздуха.

Применяется для изготовления пустотелых изделий, используемых в приборостроении, химической, станкостроительной и других отраслях промышленности

Контактное формованиеСлои препрега или волокнистого наполнителя послойно выкладывают­ся (наматываются) на форму с одновременной пропиткой его связующим (чаще всего холодного отверждения) и уплотнением прикаточным роли­ком или кистью, которой наносится связующее. Затем они отверждаются без давления или опрессовываются контрматрицей под давлением 0,01- 0,2 МПа. Снятые с формы изделия подвергаются механической обработке. Метод обеспечивает чистоту и точные размеры изделия, которое непосред­ственно контактирует с формой в процессе прессования.

Параметры процесса (температура, давление, их изменение во времени, продолжительность формования и выдержки) зависят от свойств свя­зующего и наполнителя, конфигурации и размеров формуемого изделия.

Оборудование: метод прост, не требует специального оборудования - используется одна (негативная или позитивная) форма.

Применяется для изготовления крупногабаритных изделий при мел­косерийном производстве: корпусов лодок, небольших катеров, кузовов автобусов, фургонов и др.

Автоклавное формование. Препрег или многослойный пакет из пре-прега на основе углеродных волокон выкладывают на форму, вместе с ней помещают в вакуумный мешок и снижают в нем давление. Метод, при котором отверждение проводят, создавая градиент давления по отношению к атмосферному, называют формованием с помощью вакуумного мешка. Так как нередко избыточное внешнее давление создают с помощью автоклава, то этот метод также называют автоклавным формованием. Первоначально он использовался для склеивания деталей самолетов.

Процесс собственно автоклавного формования состоит из следующих основных этапов: 1) на форму накладывают необходимое число слоев препрега; 2) при повышенных давлении и температуре в автоклаве проводят отверждение; 3) осуществляют отделку (зачистку) от-вержденных изделий. Чаще всего при отверждении в автоклаве используют и вакуумный мешок. Рассмотренный метод формования является

периодическим; на свойства изделий решающее влияние оказывают технология выкладки препрега на форму, тип и свойства вакуумного мешка и т. д.

Можно отметить следующие характерные особенности метода автоклавного формования: 1) возможность получения изделий равномерной толщины; 2) возможность формования крупногабаритных изделий; 3) высокое качество поверхности изделий; 4) при использовании вакуумного мешка получаются высококачественные изделия с низкой пористостью.

Недостаток метода автоклавного формования заключается в том, что он довольно дорог, требует затрат ручного труда и поэтому малопригоден для массового производства изделий. Тем не менее он весьма эффективен для изготовления изделий из таких высококачественных и легких материалов, как углепластики. Перспектива снижения стоимости процесса (соответственно и изделий) связана с механизацией и автоматизацией ряда операций, сокращением благодаря этому трудовых затрат и подбором лучших материалов для вакуумных мешков. Исследуется возможность применения для этого метода термостойких и долговечных мешков из силиконового каучука, которые можно использовать многократно. В частности, важно выбирать температуру и давление с учетом характеристик процесса отверждения, так как эти параметры оказывают значительное влияние на свойства формуемого изделия.

Надо отметить пожароопасность использования вакуумных мешков в методе автоклавного формования. Некоторые примеры возгорания и взрывов при использовании этого метода приведены в работе. Поэтому необходимо применять инертную газовую среду (например, азот) и принимать другие меры безопасности при автоклавном формовании.

Отверждение заготовок происходит в печи или непосредствен­но в автоклаве. Температура и продолжительность процесса отверждеиия определяются типом связующего и геометрией детали.



Охлаждение детали происходит под давлением совместно со всей оснасткой. После охлаждения деталь извлекается из формы и при необходимости проходит дальнейшую обработку.

Пултрузия. В последние годы широкое применение находят профили, прутки, трубы и другие конструктивные элементы, изго­товляемые из волокнистых композитов на полимерной матрице путем непрерывного протягивания армирующего материала, про­питанного связующим отверждаемого в профилирующей форме специальной установки. Такои процесс называют пул трузией (по аналогии с зкструзией, при которой материал выходит через фильеру под действием давления). При пултрузин он протягива­ется под действием внешнего усилия. Схема установки для полу­чения конструктивных элементов пултрузией показана на рис1.13.


Рис. 1.13. Схема упаковки для изготовлении элементов пултрузией:

а - схема процеса пултрузии. б - вид продукции(сечение профилей).

1 - армирующий материал. 2 - ванночка со связующим. 3 - напровляюшие роли­ки. 4 - матрица. 5 - обогреваемоя пресс форма. 6 - печь для термообработки. 7 - тянущее устройство. 8 - устройство для резки профиля. 9 - накопитель для заготовок.


Армирующий материал (жгуты, холсты или тканые ленты) по­следовательно проходит через ванну с жидким связующим 2, про­питывается, сжимается и идет далее в матрицу предварительного формования 4, а затем в обогреваемую пресс-форму 5, где фик­сируется требуемая конфигурация и отверждается полимерное связующее. В матрице предварительного формования плоская по форме лента пропитанного материала постепенно преобразуется по сечению к форме получаемого конструктивного элемента. Окон­чательно сечение формируется в профилирующей матрице 5, где в результате нагрева происходит частичное отверждение. Для за­вершения отверждения, элемент после формования дополнительно гермообрабатывают в печи 6.

Материал протягивается по всему тракту формообразования с помощью какого-либо тянущего устройства, например фрикцион­ной роликовой передачи, гусеничного механизма и т. п. Получен­ный профиль, труба или пруток разрезается на части определен­ной длины к далее может использоваться при сборке конструкций.


© 2024
kropotkinkadet.ru - Портал о развитии ребенка и воспитании детей